24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In circular pr<strong>of</strong>iles, every axis through the center <strong>of</strong><br />

gravity can be axis <strong>of</strong> <strong>in</strong>ertia, also the drawn axis<br />

O-O <strong>in</strong> which the vector 1 2 M M M<br />

r r r<br />

= + lies and is<br />

simultaneously the neutral axis. <strong>The</strong> absolute value<br />

<strong>of</strong> M r is given by the equation (2.63):<br />

(2.63)<br />

r<br />

M = M =<br />

r<br />

M<br />

2<br />

1<br />

r<br />

+ M 2<br />

With σ1max = M1/Z, σ2max = M2/Z and σmax = M/Z the<br />

maximum stress becomes:<br />

(2.64)<br />

σ<br />

max<br />

= ±<br />

σ<br />

2<br />

1max<br />

+ σ<br />

Equation (2.64) is also valid for tubes.<br />

a)<br />

b)<br />

2<br />

2<br />

2max<br />

Figure 2.16 Stresses caused by orthogonal moments<br />

a) rectangular pr<strong>of</strong>ile<br />

b) circular pr<strong>of</strong>ile<br />

2.3. SPECIAL CONFIGURATIONS<br />

2.3.1. Associated phase structures busbar on a<br />

common support<br />

In the associated phase structures, the busbar is<br />

<strong>of</strong>ten set horizontally on a common support as<br />

shown on the Figure 2.17.<br />

28<br />

connection<br />

post <strong>in</strong>sulator<br />

Bus support<br />

ground<br />

a<br />

y<br />

z<br />

x<br />

foundation block<br />

Figure 2.17 Common support <strong>of</strong> busbar<br />

<strong>The</strong> dynamic response <strong>of</strong> the tubes obeys the<br />

follow<strong>in</strong>g law :<br />

(2.65)<br />

∂ u<br />

∂u<br />

∂ u<br />

i<br />

i<br />

i y<br />

( ρS)<br />

+ c + ( EI)<br />

= F () t<br />

tube<br />

2<br />

∂t<br />

tube<br />

2<br />

tube<br />

tube<br />

∂t<br />

tube<br />

4<br />

∂x<br />

tube<br />

where ui is the displacement function <strong>of</strong> a tube,<br />

E modulus <strong>of</strong> elasticity,<br />

I moment <strong>of</strong> <strong>in</strong>ertia,<br />

(ρS)tube own weight per unit length.<br />

In the case <strong>of</strong> two- or three-phase faults, <strong>in</strong>stant<br />

LAPLACE’s forces meet the follow<strong>in</strong>g equations :<br />

(2.66) ∑<br />

i=<br />

r<br />

y<br />

Fi<br />

1..<br />

3<br />

r<br />

= 0<br />

If, <strong>in</strong> fact, we call i1, i2, i3 the <strong>in</strong>stant <strong>currents</strong> <strong>in</strong><br />

phases 1, 2, 3, these forces can be written as<br />

follows :<br />

0 ⎛ i3<br />

⎞<br />

(2.67) F1 = i1.<br />

⎜i2<br />

+ ⎟<br />

2 a ⎝ 2 ⎠<br />

y µ<br />

π<br />

0<br />

(2.68) F i . ( i i )<br />

y<br />

−<br />

2<br />

µ<br />

=<br />

2πa<br />

0 ⎛ i1<br />

⎞<br />

(2.69) F3 = − i3.<br />

⎜i2<br />

+ ⎟<br />

2 a ⎝ 2 ⎠<br />

y µ<br />

π<br />

By us<strong>in</strong>g the differential operator’s l<strong>in</strong>earity<br />

properties and pos<strong>in</strong>g :<br />

(2.70) U ∑u<br />

2<br />

tube<br />

=<br />

i<br />

3<br />

tube<br />

i<br />

one could easily check the follow<strong>in</strong>g differential<br />

equation <strong>in</strong>dependent <strong>of</strong> the shape <strong>of</strong> the current<br />

chosen (phase to earth, earthed or <strong>in</strong>sulated phase to<br />

phase, three-phase):<br />

1<br />

4<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!