24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(2.71)<br />

2 tube<br />

tube<br />

4 tube<br />

U ∂U<br />

∂ U<br />

+<br />

2 tube<br />

tube 4 ∑ i<br />

∂t<br />

i=<br />

1..<br />

3<br />

y<br />

( ρS)<br />

c + ( EI)<br />

= F = 0<br />

tube<br />

∂<br />

∂t<br />

tube<br />

Consequently : U = 0 = ∑u<br />

∀t∀x<br />

i<br />

tube<br />

i<br />

∂x<br />

if the sequence <strong>of</strong> the connect<strong>in</strong>g pieces are the<br />

same on each phase.<br />

This relation <strong>of</strong> functions ui be<strong>in</strong>g true at any<br />

moment, whatever the value <strong>of</strong> x, one could easily<br />

deduce that the forces and moments deduced from<br />

the function derivatived at connection level also<br />

meet the relations below :<br />

(2.72) ∑<br />

i=<br />

(2.73) ∑<br />

i=<br />

1..<br />

3<br />

1..<br />

3<br />

y<br />

i,<br />

k<br />

f<br />

M<br />

z<br />

i,<br />

k<br />

= 0<br />

= 0<br />

This is true for any tube k.<br />

Consequently, as the efforts at top <strong>of</strong> the column<br />

are the vectorial addition <strong>of</strong> the contributions <strong>of</strong><br />

tubes set on each side, they meet similar relations.<br />

(2.74) ∑<br />

i=<br />

y<br />

f i<br />

1..<br />

3<br />

z<br />

i<br />

= 0<br />

(2.75) ∑ M = 0<br />

i=<br />

1..<br />

3<br />

Dynamic response <strong>of</strong> <strong>in</strong>sulator column :<br />

With respect to the bend<strong>in</strong>g <strong>of</strong> the jth column <strong>of</strong><br />

phase i, one has the follow<strong>in</strong>g equation available to<br />

calculate the dynamic response <strong>of</strong> the system :<br />

(2.76)<br />

( ρS)<br />

∂<br />

2<br />

u<br />

column<br />

column<br />

j<br />

∂u<br />

j<br />

column + c<br />

column<br />

+<br />

∂t<br />

2<br />

∂t<br />

∂<br />

4<br />

u<br />

column<br />

column<br />

∂z<br />

4<br />

y<br />

i,<br />

j o<br />

j<br />

( EI)<br />

= f δ ( z − z )<br />

z0 be<strong>in</strong>g the po<strong>in</strong>t <strong>of</strong> application <strong>in</strong> the middle <strong>of</strong><br />

the connection.<br />

At bottom <strong>of</strong> the jth column, it will also be possible<br />

to check the follow<strong>in</strong>g relations :<br />

(2.77) ∑<br />

i=<br />

(2.78) ∑<br />

i=<br />

1..<br />

3<br />

1..<br />

3<br />

F<br />

M<br />

y<br />

i,<br />

j<br />

x<br />

i,<br />

j<br />

= 0<br />

= 0<br />

With respect to the torsion <strong>of</strong> the jth column <strong>of</strong><br />

phase i, one has the follow<strong>in</strong>g equation to calculate<br />

the dynamic response <strong>of</strong> the system :<br />

29<br />

( )<br />

I<br />

(2.79)<br />

+<br />

θ column<br />

∂ θ<br />

column<br />

j<br />

z<br />

( GJ)<br />

= M δ(<br />

z −z<br />

)<br />

column<br />

2 column<br />

j<br />

2<br />

∂t<br />

2<br />

∂ θ<br />

∂z<br />

2<br />

+ c′<br />

column<br />

∂θ<br />

i,<br />

j<br />

column<br />

j<br />

∂t<br />

z0 be<strong>in</strong>g the po<strong>in</strong>t <strong>of</strong> application <strong>in</strong> the middle <strong>of</strong><br />

the connection.<br />

I θ : Mass <strong>in</strong>ertia relative to the axis per unit <strong>of</strong><br />

length,<br />

G : Coulomb or torsion modulus,<br />

J : Polar <strong>in</strong>ertia <strong>of</strong> straight section.<br />

At bottom <strong>of</strong> the jth column <strong>of</strong> phase i, one could<br />

also check the follow<strong>in</strong>g relations :<br />

(2.80) ∑<br />

i=<br />

Conclusions :<br />

1..<br />

3<br />

M<br />

z<br />

i,<br />

jbase<br />

= 0<br />

<strong>The</strong> wrenches (force and moment) at bottom <strong>of</strong> two<br />

columns <strong>in</strong> which the phases differ determ<strong>in</strong>e the<br />

third wrench. <strong>The</strong> other contributions <strong>of</strong> each phase<br />

are consequently l<strong>in</strong>ked to stresses other than<br />

electrodynamic (dead weight, w<strong>in</strong>d, ...) <strong>The</strong><br />

support<strong>in</strong>g structures are subject to differential<br />

load<strong>in</strong>gs. <strong>The</strong>ir siz<strong>in</strong>g will most <strong>of</strong>ten depend on the<br />

other design hypotheses (w<strong>in</strong>d, ice, earthquake,<br />

etc.)<br />

Example :<br />

Consider<strong>in</strong>g a structure as illustrated <strong>in</strong> Figure 2.18,<br />

we have plotted <strong>in</strong> Figure 2.19 the time variations<br />

vs. time, forces and moments <strong>in</strong> the three<br />

directions.<br />

<strong>The</strong> dimensional data for this structure are as<br />

follows :<br />

a = 5 m , Icc = 31.5 kA,<br />

busbar:<br />

bar length = 15 m, diameter = 120 mm, thickness =<br />

8 mm, material : Alum<strong>in</strong>ium,<br />

connection : clamped, p<strong>in</strong>ned on each post<br />

<strong>in</strong>sulator,<br />

<strong>in</strong>sulat<strong>in</strong>g glass column. C4<br />

One can easily check on Figure 2.19 that, at bottom<br />

<strong>of</strong> the column :<br />

- the sum <strong>of</strong> the moments <strong>in</strong> the direction x is zero<br />

(electrodynamic load),<br />

- the moments <strong>in</strong> the direction y are practically<br />

constant (they correspond to the dead weight),<br />

- the sum <strong>of</strong> the moments to z is zero<br />

(electrodynamic load),<br />

- the efforts to x are zero (electrodynamic load),<br />

- the sum <strong>of</strong> the forces to y is zero (electrodynamic<br />

load),<br />

- the forces to z are practically constant (they<br />

correspond to the dead weight).<br />

For the support<strong>in</strong>g structure given below, we have<br />

calculated the loads under static conditions from the<br />

maximum dynamic values and dead weight. <strong>The</strong><br />

results are as follows :<br />

o

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!