24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>in</strong>to account <strong>in</strong> the calculation. One must consider that<br />

the value <strong>of</strong> tK = 0.1 s is <strong>of</strong> a rather theoretical nature.<br />

Force / kN<br />

Force / kN<br />

100mm<br />

200mm<br />

400mm<br />

110<br />

100<br />

Force / kN 60mm<br />

90<br />

80<br />

70<br />

60<br />

1 spacer 3 spacers<br />

55<br />

84,6<br />

55,2<br />

83,1 83<br />

54,7<br />

50<br />

40<br />

40 39,6 39,8<br />

30 26,3 26,3 26,4<br />

20<br />

10<br />

110<br />

100<br />

90<br />

80<br />

70<br />

20<br />

10<br />

0<br />

0<br />

0,1s 0,3s 0,5s<br />

<strong>short</strong>-<strong>circuit</strong> duration<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

88<br />

117,2 117,6 116,7<br />

83,5<br />

58,8 58 58,1<br />

30,3 29,7<br />

29,6<br />

0,1s 0,3s 0,5s<br />

<strong>short</strong>-<strong>circuit</strong> duration<br />

1 spacer 3 spacers<br />

60<br />

55,9<br />

50<br />

40<br />

30<br />

42,9<br />

30,2 31,8<br />

27<br />

41 40<br />

3839,9<br />

4140,8<br />

41<br />

110<br />

100<br />

90<br />

80<br />

70<br />

40<br />

30<br />

20<br />

10<br />

0<br />

60mm<br />

100mm<br />

200mm<br />

400mm<br />

60<br />

56<br />

50<br />

47,2 46,8<br />

35<br />

0,1s 0,3s 0,5s<br />

<strong>short</strong>-<strong>circuit</strong> duration<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

60mm<br />

100mm<br />

200mm<br />

400mm<br />

32 28 31<br />

27<br />

1 spacer 3 spacers<br />

56,9<br />

54 54<br />

79,1<br />

60,5 60<br />

56,3<br />

0,1s 0,3s 0,5s<br />

<strong>short</strong>-<strong>circuit</strong> duration<br />

78<br />

86,4<br />

41 40 42,8<br />

38 40,8<br />

40<br />

50,6<br />

0,1s 0,3s 0,5s<br />

<strong>short</strong>-<strong>circuit</strong> duration<br />

57,5<br />

50<br />

40<br />

40 34,8<br />

Figure 3.47 a, b, c Calculation results<br />

a) Contraction maxima Fpi<br />

b) Sw<strong>in</strong>g-out maxima Ft<br />

c) Fall-<strong>of</strong>-span maxima Ff<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

30<br />

20<br />

10<br />

0<br />

79<br />

55 54,7<br />

71<br />

89<br />

60,6<br />

58<br />

0,1s 0,3s 0,5s<br />

<strong>short</strong>-<strong>circuit</strong> duration<br />

<strong>The</strong> contraction effect rises with the number <strong>of</strong> spacers<br />

and the sub-conductor distance to become the relevant<br />

<strong>short</strong>-<strong>circuit</strong> tension force at the suspension po<strong>in</strong>ts for<br />

three spacers at aT = 400 mm. <strong>The</strong> dependency <strong>of</strong> the<br />

second and third maxima on the number <strong>of</strong> spacers must<br />

be attributed to the reduction <strong>of</strong> sag (i.e. effective<br />

conductor length available for the contraction) by the<br />

contraction with <strong>in</strong>creas<strong>in</strong>g sub-conductor distance aT<br />

and number <strong>of</strong> spacers nAH dur<strong>in</strong>g the <strong>short</strong>-<strong>circuit</strong>. Also<br />

the existence <strong>of</strong> the droppers may lead to a reduction <strong>of</strong><br />

the k<strong>in</strong>etic possibilities <strong>of</strong> the span dur<strong>in</strong>g the sw<strong>in</strong>gout<br />

and the fall-<strong>of</strong>-span phases, <strong>in</strong> particular.<br />

In comparison to the above the same sequence is used<br />

for the reactions at the foot <strong>of</strong> the towers and at the<br />

transition to the foundation <strong>in</strong> Figure 3.48 a, b and c.<br />

<strong>The</strong> static relation between the excit<strong>in</strong>g tension force<br />

70<br />

62,9<br />

106,5<br />

56<br />

and the considered reaction force at the tower foot is<br />

1/6.2.<br />

Of course the respective values <strong>of</strong> Figure 3.49 for equal<br />

conditions must rema<strong>in</strong> <strong>in</strong>dependent <strong>of</strong> the <strong>short</strong>-<strong>circuit</strong><br />

duration. <strong>The</strong> number <strong>of</strong> spacers and the sub-conductor<br />

distance have severe effect on the reactions. <strong>The</strong> fall <strong>of</strong><br />

span is generally the more important aga<strong>in</strong>st sw<strong>in</strong>g-out.<br />

For up to 100 mm sub-conductor spac<strong>in</strong>g aT, the<br />

reaction to contraction is negligible aga<strong>in</strong>st all other<br />

maximum. Yet, if the calculation and, <strong>in</strong> particular, the<br />

chosen damp<strong>in</strong>g is right, the contraction plays the<br />

dom<strong>in</strong>ant role among the other maximums at aT = 200<br />

mm and above. With one spacer and aT = 200 mm, the<br />

ESL factor for contraction is slightly less than 1, while<br />

for 400 mm it is 1.2. For a larger number <strong>of</strong> spacers the<br />

factors are even higher.<br />

F<strong>in</strong>ally, the maximum spacer compression was<br />

considered. Figure 3.48 gives the results <strong>of</strong> that calculation.<br />

Spacer compression has lately come <strong>in</strong>to<br />

renewed <strong>in</strong>terest through [Ref 54].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!