24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

asymmetry, this functional relation may very <strong>of</strong>ten be<br />

written <strong>in</strong> the form:<br />

( ϕ ϕ )<br />

2<br />

1+<br />

m⋅cos<br />

−<br />

dyn 2<br />

0<br />

(5.12) Mx= α ⋅I ⋅<br />

1+<br />

m<br />

<strong>The</strong> coefficient m is denoted as a function <strong>of</strong> the<br />

max m<strong>in</strong><br />

maximum dynamic components M xdynand<br />

M xdyn,<br />

found at the maximum and m<strong>in</strong>imum asymmetries, ϕ 0<br />

and π/2+ϕ0 respectively:<br />

M − M<br />

(5.13) m =<br />

m<strong>in</strong><br />

M<br />

max m<strong>in</strong><br />

xdyn xdyn<br />

xdyn<br />

This coefficient is <strong>in</strong>dependent <strong>of</strong> current amplitude I.<br />

It varies slightly between one type <strong>of</strong> fault and<br />

another, as shown <strong>in</strong> the table below:<br />

Type <strong>of</strong> fault m<br />

s<strong>in</strong>gle-phase 0.783<br />

two-phase 0.800<br />

three-phase on busbar 0.944<br />

three-phase on two busbars 0.831<br />

<strong>The</strong> calculated phase to phase or phase to earth value<br />

provides a good conservative approximation. Formula<br />

(5.12) is not applicable to median phases 2 and 5 <strong>of</strong><br />

the "associated phase" arrangements, see <strong>in</strong> particular<br />

Figure 5.21, Figure 5.24 and Figure 5.26 In such a<br />

case, the stresses average out to zero, although the<br />

zero value is never reached.<br />

7.2.3.2.2.3. Influence <strong>of</strong> Time Constant τ<br />

Not<strong>in</strong>g that at the m<strong>in</strong>imum asymmetry, the time<br />

constant does not affect the load<strong>in</strong>g, it may be<br />

deduced that α’ is <strong>in</strong>dependent <strong>of</strong> τ, where:<br />

(5.14) α ( t )<br />

ατ<br />

′ k =<br />

1+<br />

( , t k )<br />

m( τ , t )<br />

This leaves a s<strong>in</strong>gle variable (α or m) for analysis.<br />

Interest<strong>in</strong>gly, there is someth<strong>in</strong>g <strong>of</strong> an analogy<br />

between this factor m and that <strong>of</strong> IEC 60865 [Ref 2]:<br />

tk τ ⎡ −2<br />

⎤<br />

τ<br />

m = ⋅⎢1−e⎥, deriv<strong>in</strong>g from <strong>in</strong>tegration <strong>of</strong><br />

t k ⎣ ⎦<br />

the square <strong>of</strong> the DC component <strong>of</strong> the <strong>short</strong>-<strong>circuit</strong><br />

<strong>in</strong>tensity, as well as the differences due to vibration<br />

mechanics. Indeed, <strong>in</strong> the case <strong>of</strong> a simple oscillator<br />

ω, the dynamic response to damped load<strong>in</strong>g<br />

k<br />

85<br />

2 2<br />

⎛ ω ⋅τ<br />

⎞<br />

<strong>in</strong>troduces a factor H ⎜ H = ⎟<br />

2 2<br />

⎝ 1+<br />

ω ⋅τ<br />

⎠<br />

(transmittance). In practice, it is best to seek a<br />

pragmatic dependence <strong>in</strong> accordance with τ or else<br />

opt for a maximized determ<strong>in</strong>istic choice.<br />

7.2.3.2.2.4. Influence <strong>of</strong> Clearance Time tk<br />

For rigid structures, we may assume that beyond a<br />

certa<strong>in</strong> duration <strong>of</strong> the <strong>short</strong> <strong>circuit</strong>, the maximum<br />

response has been reached. In the simplest cases, like<br />

the one below, a model <strong>of</strong> the follow<strong>in</strong>g type may be<br />

used:<br />

M<br />

- if tk ≥ t peak , then α MAX is constant<br />

- if tkc < tcrete<br />

. then<br />

(5.15)<br />

⎛ ⎛<br />

M ⎜ ⎜<br />

π t<br />

α MAX = α MAX ⋅ 1−<br />

cos<br />

⎜ ⎜<br />

⎝ ⎝ 2t<br />

Moment Mx (N.m)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

k<br />

peak<br />

Variation <strong>of</strong> the maximum value <strong>of</strong> the dynamic<br />

answer, <strong>in</strong> function <strong>of</strong> <strong>short</strong>-<strong>circuit</strong> duration<br />

⎞⎞<br />

⋅⎟⎟<br />

⎟⎟<br />

⎠⎠<br />

0<br />

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14<br />

<strong>short</strong>-<strong>circuit</strong> duration (secondes)<br />

Figure 5.14 Variation <strong>of</strong> maximum response<br />

In the general case, modal superposition <strong>of</strong>ten renders<br />

the analysis <strong>of</strong> clearance time <strong>in</strong>fluence complex. An<br />

example is given below.<br />

Ne<br />

wto<br />

ns.<br />

m<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Dynamic response <strong>of</strong> a post <strong>in</strong>sulator<br />

0,00 0,02 0,04 0,06 0,08 0,10<br />

time s<br />

Figure 5.15 Variation <strong>of</strong> maximum response<br />

t= tpeak

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!