24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

With a constant acceleration, the f<strong>in</strong>al velocity v follows<br />

from:<br />

a 1 2 1 v<br />

y x − = & y&<br />

ta<br />

= t<br />

2 2 2 t<br />

(3.18) ( ) 2 a<br />

(3.19)<br />

y<br />

v = 2<br />

a<br />

−<br />

2<br />

t<br />

( x)<br />

<strong>The</strong> centrifugal force act<strong>in</strong>g on a conductor element is<br />

m′<br />

d xv<br />

d F =<br />

y<br />

(3.20)<br />

( x)<br />

− a / 2 y(<br />

x)<br />

m′<br />

⎡<br />

= 4 y<br />

t ⎢<br />

⎣<br />

a<br />

2<br />

=<br />

a ⎤<br />

2⎥<br />

⎦<br />

a<br />

( x)<br />

− d x<br />

a<br />

⎡<br />

y<br />

m′<br />

d x ⎢<br />

⎢2<br />

− a / 2 ⎢<br />

⎢⎣<br />

a ⎤<br />

−<br />

2 ⎥<br />

⎥<br />

ta<br />

⎥<br />

⎥⎦<br />

( x)<br />

<strong>The</strong> <strong>in</strong>tegration along half the conductor gives a first<br />

approach <strong>of</strong> the bend<strong>in</strong>g force at the <strong>in</strong>sulator:<br />

(3.21)<br />

F<br />

v<br />

K<br />

2<br />

K<br />

2<br />

m′<br />

⎡<br />

= ∫ d F = 4 y<br />

t ∫ ⎢<br />

⎣<br />

0<br />

a<br />

0<br />

( x)<br />

a ⎤ K µ 0<br />

− d x 4<br />

2⎥<br />

=<br />

⎦ 6 2π<br />

( I ′′ )<br />

<strong>The</strong> forces calculated with equation (3.21) are too low<br />

compared with the measured ones. <strong>The</strong> reason may be<br />

the simplifications done <strong>in</strong> the model <strong>of</strong> the dropper. It<br />

is empirically found that Fv is to be corrected by the<br />

factors ld/K and 2,5 ld/b and the actual bend<strong>in</strong>g force on<br />

the <strong>in</strong>sulator becomes :<br />

ld<br />

ld<br />

K µ 0<br />

Fd<br />

= Fv<br />

2,<br />

5 = 4<br />

b K 6 2π<br />

(3.22)<br />

2<br />

5 µ 0 ( I k′′<br />

) ld<br />

= ld<br />

3 2π<br />

a b<br />

( I ′′ )<br />

with a validity range <strong>of</strong> 1,4 ≤ ld/b ≤ 3,3.<br />

k<br />

a<br />

2<br />

k<br />

a<br />

ld<br />

ld<br />

2,<br />

5<br />

b K<br />

In equation (3.22), Fd only depends on the geometry and<br />

the <strong>short</strong>-<strong>circuit</strong> current but not the conductor mass and<br />

the <strong>short</strong>-<strong>circuit</strong> duration, as it follows from the tests.<br />

<strong>The</strong> calculation <strong>of</strong> Fd accord<strong>in</strong>g to equation (3.22) is<br />

compared with the tests [Ref 41]. Most <strong>of</strong> the values lie<br />

with<strong>in</strong> a range <strong>of</strong> ±25 %, some are slightly more than 25<br />

% on the safe side. This result allows the application <strong>of</strong><br />

the simplified method given above.<br />

From this the ESL follows accord<strong>in</strong>g to Paragraph 3.5.2<br />

and with this the design load.<br />

Droppers with flexible upper ends<br />

<strong>The</strong> upper ends <strong>of</strong> droppers <strong>in</strong> the middle <strong>of</strong> the span or<br />

near to it move with the ma<strong>in</strong> conductor <strong>in</strong> the bus. If<br />

2<br />

2<br />

52<br />

the droppers are not stretched, there will be no<br />

significant bend<strong>in</strong>g force on the apparatus or <strong>in</strong>sulators<br />

at the lower end caused by the movement <strong>of</strong> the busbar.<br />

If the droppers are stretched, a high load<strong>in</strong>g can occur.<br />

Until now a simplified method for the calculation <strong>of</strong> this<br />

force is not available. <strong>The</strong>refore it is recommended to<br />

make the droppers longer to avoid stretch<strong>in</strong>g. If this is<br />

not possible, advanced methods should be used.<br />

<strong>The</strong> droppers with current (current path C <strong>in</strong> Figure<br />

3.22) sw<strong>in</strong>g out due to the electromagnetic forces<br />

between the droppers. <strong>The</strong> maximum force at the lower<br />

end takes place dur<strong>in</strong>g sw<strong>in</strong>g-out <strong>of</strong> the busbar. A good<br />

estimation <strong>of</strong> the load<strong>in</strong>g at the apparatus and <strong>in</strong>sulators<br />

can be determ<strong>in</strong>ed assum<strong>in</strong>g fixed upper ends <strong>of</strong> the<br />

droppers and us<strong>in</strong>g the simplified method stated above.<br />

3.4. THE BUNDLE PINCH<br />

3.4.1. Introduction<br />

This phenomena has been well described for the first<br />

time by Manuzio <strong>in</strong> 1967 [Ref 53] and briefly repeated<br />

here :<br />

From <strong>in</strong>itial rest position, subconductors move towards<br />

each other, rema<strong>in</strong><strong>in</strong>g more or less parallel <strong>in</strong> most part<br />

<strong>of</strong> the subspan, except close to the spacer. After first<br />

impact (<strong>in</strong> the centre <strong>of</strong> subspan) there is a quick<br />

propagation <strong>of</strong> the wave through the spacer end <strong>of</strong> the<br />

subspan.<br />

<strong>The</strong>re is a struggle between electromagnetic force which<br />

<strong>in</strong>crease on the mov<strong>in</strong>g part (the distance is decreas<strong>in</strong>g)<br />

and would like to force contact between subconductors,<br />

and tension <strong>in</strong>crease <strong>in</strong> the subconductor which react<br />

aga<strong>in</strong>st the electromagnetic force. <strong>The</strong>re is a maximum<br />

p<strong>in</strong>ch when the wave propagation stops towards the<br />

spacer and must come back to the centre <strong>of</strong> the span,<br />

this is followed by oscillations (back to the spacer, then<br />

to the subspan centre, etc.) because electromagnetic<br />

force is still on, these oscillations are damped slightly so<br />

that first peak is the maximum peak. If <strong>short</strong> <strong>circuit</strong> is<br />

long enough, the p<strong>in</strong>ch oscillations tends to a permanent<br />

force, considerably lower than peak value (typically 2<br />

times less).<br />

Dur<strong>in</strong>g this phenomenon, spacer is strongly compressed.<br />

<strong>The</strong> compression is related to maximum p<strong>in</strong>ch force <strong>in</strong><br />

the conductor and angle between the spacer and the<br />

subconductor.<br />

Despite the fact that bend<strong>in</strong>g stiffness locally change the<br />

curvature <strong>of</strong> the conductors, the deformation energy <strong>in</strong><br />

bend<strong>in</strong>g rema<strong>in</strong> small compared to tensile deformation<br />

energy, so that simple or advanced method can neglect<br />

bend<strong>in</strong>g stiffness <strong>in</strong> their approach. Only structural<br />

damp<strong>in</strong>g can be related to bend<strong>in</strong>g, which could have<br />

<strong>in</strong>fluence on p<strong>in</strong>ch oscillations but certa<strong>in</strong>ly not on the<br />

peak value, which is a design value for the spacer.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!