24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Zug-/Druck-Kraft<br />

<strong>in</strong> kN<br />

Z eit <strong>in</strong> s<br />

Figure 3.64 Time characteristic <strong>of</strong> the<br />

tensile/compressive force <strong>in</strong> the<br />

<strong>in</strong>terphase-spacer<br />

<strong>The</strong> frequency <strong>of</strong> ca. 2 Hz is identical with the one <strong>in</strong><br />

Figure 3.63b. <strong>The</strong> values <strong>of</strong> amplitudes are proportional<br />

to the magnitude <strong>of</strong> the electromagnetic force act<strong>in</strong>g on<br />

the phase spacer. <strong>The</strong> substantially higher frequency<br />

harmonics <strong>of</strong> ca. 40 – 80 Hz arise due to the brac<strong>in</strong>g<br />

between conductor and phase spacer. Frequency and<br />

amplitude <strong>of</strong> the harmonics depend on the rigidity <strong>of</strong> the<br />

phase spacer / conductor clamp<strong>in</strong>g system. For the case<br />

<strong>in</strong> question, the use <strong>of</strong> conductor spirals would cause<br />

damp<strong>in</strong>g <strong>of</strong> the harmonic amplitudes. However, this<br />

effect cannot be said to be universal, i.e. <strong>in</strong> other<br />

arrangements it could just as well result <strong>in</strong> a ga<strong>in</strong>.<br />

<strong>The</strong>refore, the use <strong>of</strong> conductor spirals is not a sensible<br />

course <strong>of</strong> action without prior <strong>in</strong>vestigation.<br />

Despite the higher harmonic components, the<br />

''<br />

compressive forces always (even when I k 2 = 40 kA)<br />

rema<strong>in</strong>ed below the permitted Euler buckl<strong>in</strong>g force (16<br />

kN). <strong>The</strong>ir proportion <strong>of</strong> the total load<strong>in</strong>g on the round<br />

bar is low.<br />

As Figure 3.62d shows, the <strong>in</strong>terphase-spacer cambers<br />

vertically downwards when the span drops. <strong>The</strong><br />

potential energy that builds up dur<strong>in</strong>g the first 500 ms is<br />

converted to energy <strong>of</strong> deformation (bend<strong>in</strong>g) and<br />

br<strong>in</strong>gs about the first maximum <strong>of</strong> the reference stress at<br />

0.92 s (Fig. 7).<br />

150.<br />

100.<br />

Spannung <strong>in</strong><br />

N/mm²<br />

50.<br />

0.<br />

.0 .5 1.0 1.5 2.0 2.5 3 .0 3.5<br />

Z eit <strong>in</strong> s<br />

Figure 3.65 Time characteristic <strong>of</strong> the van Mises stress at the midpo<strong>in</strong>t<br />

<strong>of</strong> the <strong>in</strong>terphase-spacer<br />

<strong>The</strong> nature <strong>of</strong> the coupl<strong>in</strong>g between conductor and<br />

<strong>in</strong>terphase-spacer is irrelevant here. <strong>The</strong> results with<br />

free horizontal or horizontal and vertical rotational<br />

motion <strong>of</strong> the coupl<strong>in</strong>g were identical, which was to be<br />

expected <strong>in</strong> view <strong>of</strong> the low stiffness <strong>of</strong> the conductor.<br />

<strong>The</strong>refore, the use <strong>of</strong> horizontal or even articulated<br />

conductor clamps is unnecessary.<br />

65<br />

In practice, the <strong>in</strong>terphase-spacers are not fitted<br />

precisely perpendicular to the conductors. Calculations<br />

have been performed <strong>in</strong> which, for the sake <strong>of</strong> example,<br />

the <strong>in</strong>terphase-spacer has been shifted on one side by<br />

0.2 m along the axis <strong>of</strong> the conductor. However, the<br />

result<strong>in</strong>g horizontal bend<strong>in</strong>g moments only caused a<br />

slight <strong>in</strong>crease <strong>in</strong> the load<strong>in</strong>g on the <strong>in</strong>terphase-spacer.<br />

When the <strong>in</strong>terphase-spacer was fitted correctly, such<br />

shifts are considerably less than the calculated value so<br />

that the stress act<strong>in</strong>g <strong>in</strong> the horizontal plane is <strong>of</strong><br />

secondary importance.<br />

Thus, the major load on the <strong>in</strong>terphase-spacer results<br />

from the dropp<strong>in</strong>g motion.<br />

Summaris<strong>in</strong>g the <strong>in</strong>vestigation one can say that by<br />

fitt<strong>in</strong>g a <strong>in</strong>terphase-spacer at the mid-po<strong>in</strong>t <strong>of</strong> the<br />

conductor span it is possible to halve the conductor<br />

deflection. <strong>The</strong> static and dynamic conductor tensile<br />

forces are little affected <strong>in</strong> the process.<br />

<strong>The</strong> coupl<strong>in</strong>g between the <strong>in</strong>terphase-spacer and the<br />

conductor has no effect on the behavior <strong>of</strong> the stra<strong>in</strong>ed<br />

conductor or on the <strong>mechanical</strong> load exerted on the<br />

spacer. Coupl<strong>in</strong>gs with horizontal or articulated jo<strong>in</strong>ts<br />

are unnecessary.<br />

Similarly, the conductor spirals that are widely used <strong>in</strong><br />

the world <strong>of</strong> overhead-l<strong>in</strong>es are also unnecessary at the<br />

coupl<strong>in</strong>g po<strong>in</strong>ts. Depend<strong>in</strong>g on the rigidity <strong>of</strong> the overall<br />

structure, their use can either <strong>in</strong>crease or decrease the<br />

tensile/compressive load<strong>in</strong>g on the <strong>in</strong>terphase-spacer.<br />

<strong>The</strong> compressive load<strong>in</strong>g on the <strong>in</strong>terphase-spacer is <strong>of</strong><br />

the same order <strong>of</strong> magnitude as the electromagnetic<br />

' '<br />

force F ⋅ l ⋅( F as def<strong>in</strong>ed <strong>in</strong> equation 15, IEC 60865-1)<br />

and, <strong>in</strong> the case <strong>of</strong> the alternatives exam<strong>in</strong>ed, always<br />

rema<strong>in</strong>ed less than the maximum permitted value <strong>of</strong><br />

buckl<strong>in</strong>g load.<br />

<strong>The</strong> major load on the <strong>in</strong>terphase-spacer results from the<br />

bend<strong>in</strong>g moments caused by the dropp<strong>in</strong>g motion.<br />

<strong>The</strong> fitt<strong>in</strong>g <strong>of</strong> <strong>in</strong>terphase-spacers at the mid-po<strong>in</strong>t <strong>of</strong> the<br />

span enabled the <strong>short</strong>-<strong>circuit</strong> strength o to be <strong>in</strong>creased<br />

from 21 kA to over 46 kA (at F t = 38 kN).<br />

3.7.3. A new simplified method for spacer<br />

compression evaluation.<br />

As discussed already <strong>in</strong> [Ref 54] the well known<br />

Manuzio simple formula [Ref 53] neglect some<br />

important <strong>effects</strong>, ma<strong>in</strong>ly:<br />

• Tension changes <strong>in</strong> the subconductor dur<strong>in</strong>g contact<br />

period, so called p<strong>in</strong>ch effect. This effect can be<br />

quite large, as the p<strong>in</strong>ch can be several times the<br />

<strong>in</strong>itial tension (CIGRE brochure 105 [Ref 1]). For<br />

example, <strong>in</strong> our tests presented <strong>in</strong> this document,<br />

the p<strong>in</strong>ch is two times <strong>in</strong>itial value (third case),<br />

even higher <strong>in</strong> [Ref 54]. It is quite clear that the<br />

spacer compression, which is directly related to the<br />

p<strong>in</strong>ch (both p<strong>in</strong>ch and spacer compression are<br />

quasi-simultaneous) is also affected by the p<strong>in</strong>ch.<br />

• Asymmetry <strong>of</strong> the <strong>short</strong>-<strong>circuit</strong> current. With<br />

<strong>in</strong>creas<strong>in</strong>g <strong>short</strong>-<strong>circuit</strong> current, time to contact and<br />

to maximum p<strong>in</strong>ch and spacer compression<br />

becomes smaller and smaller (lower than 0.1 s <strong>in</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!