24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.7. SPECIAL PROBLEMS<br />

3.7.1. Auto-reclos<strong>in</strong>g<br />

a) Introduction<br />

In order to reduce outage duration, reclosure is very<br />

<strong>of</strong>ten used to re-energise overhead l<strong>in</strong>es after a tripp<strong>in</strong>g<br />

due to a fault on the power system. A reclosure cycle<br />

will be <strong>in</strong>dentified by : Tk / Ti / Tk2 where Tk is the<br />

first <strong>short</strong> <strong>circuit</strong> duration, Ti the reclos<strong>in</strong>g <strong>in</strong>terval and<br />

Tk2 the second <strong>short</strong> <strong>circuit</strong> duration. For example, on<br />

RTE transmission network, the reclosure cycle is 120<br />

ms / 2 to 5 s / 90 ms for 400 kV and 210 ms / 2 to 5 s /<br />

150 ms for 225 kV depend<strong>in</strong>g on the protection devices.<br />

But fast reclosure is sometimes used to m<strong>in</strong>imize the<br />

reclos<strong>in</strong>g <strong>in</strong>terval (Ti = 300 ms) on 90, 63 kV customers<br />

l<strong>in</strong>es.<br />

When the fault is ma<strong>in</strong>ta<strong>in</strong>ed, the stresses can be larger<br />

than before. <strong>The</strong> calculation <strong>of</strong> the <strong>effects</strong> requires the<br />

use <strong>of</strong> f<strong>in</strong>ite element techniques and powerful<br />

computers. IEC 60865 modell<strong>in</strong>g proposes a simplified<br />

method to calculate the tensile force dur<strong>in</strong>g or after the<br />

<strong>short</strong>-<strong>circuit</strong> for the simplest arrangements with or<br />

without p<strong>in</strong>ch <strong>effects</strong>. But reclosure is not taken <strong>in</strong>to<br />

account.<br />

Span [m] 68 68 34 34<br />

Phase n° 1 2 1 2<br />

Static conductor<br />

tension [N]<br />

5740 5370 3579 3390<br />

First <strong>short</strong>-<strong>circuit</strong> force<br />

[N]<br />

10040 8559 9919 7952<br />

First drop force [N] 12824 13694 9203 9045<br />

Second <strong>short</strong>-<strong>circuit</strong><br />

force [N]<br />

11432 9968 10532 6660<br />

Second drop force [N] 21870 22051 8181 9146<br />

Table 3.2 Test results<br />

b) Tests<br />

<strong>The</strong> case 9 tests <strong>in</strong> the Cigre brochure concerns two<br />

spans <strong>of</strong> 34 (Figure 3.56) and 68 m (Figure 3.55) us<strong>in</strong>g<br />

1 x ASTER (570 mm 2 ) cable per phase made by EDF.<br />

<strong>The</strong> reclosure cycle is 85 ms / 2 s / 95 ms. <strong>The</strong><br />

difference <strong>of</strong> the tensile force between two phases<br />

(Table 3.2) is due to several causes : static tensile force,<br />

portal stiffness (between middle and edge), shift <strong>in</strong> time.<br />

After the second <strong>short</strong>-<strong>circuit</strong>, maximum <strong>short</strong>-<strong>circuit</strong><br />

force on phase 1 <strong>of</strong> 68 m span is <strong>in</strong>creased by 13 % (16<br />

% on phase 2) and drop force by 70 % (61 % on phase<br />

2).<br />

2 5 0 0 0<br />

2 0 0 0 0<br />

1 5 0 0 0<br />

1 0 0 0 0<br />

5 0 0 0<br />

0<br />

0<br />

0,17<br />

0,34<br />

0,51<br />

0,68<br />

0,85<br />

1,02<br />

1,19<br />

1,36<br />

1,53<br />

1,7<br />

1,87<br />

Figure 3.55 Tensile force measurement (N) versus time (s) – phase<br />

68 m – phase 1.<br />

2,04<br />

2,21<br />

2,38<br />

2,55<br />

2,72<br />

2,89<br />

3,06<br />

3,23<br />

3,4<br />

3,57<br />

3,74<br />

3,91<br />

4,08<br />

4,25<br />

61<br />

10000<br />

5000<br />

0<br />

0<br />

0.17<br />

0.34<br />

0.51<br />

0.68<br />

0.85<br />

1.02<br />

1.19<br />

1.36<br />

1.53<br />

1.7<br />

1.87<br />

2.04<br />

2.21<br />

2.38<br />

2.55<br />

2.72<br />

2.89<br />

3.06<br />

3.23<br />

3.4<br />

3.57<br />

3.74<br />

3.91<br />

4.08<br />

4.25<br />

Figure 3.56 Tensile force measurement (N) versus time (s) – span 34<br />

m – phase 1.<br />

c) Extension <strong>of</strong> the IEC method<br />

Annex 8.4 proposes an extension <strong>of</strong> the IEC pendulum<br />

model for autoreclos<strong>in</strong>g <strong>in</strong> the simplest cases<br />

0<br />

( δ m < 70 ) without dropp<strong>in</strong>g. Several po<strong>in</strong>ts have<br />

been studied relat<strong>in</strong>g the second <strong>short</strong>-<strong>circuit</strong> to the<br />

<strong>in</strong>fluence <strong>of</strong> the first-fault heat<strong>in</strong>g. Annex 8.5 gives a<br />

synthesis <strong>of</strong> this proposal and a sample <strong>of</strong> calculation.<br />

d) Comparisons<br />

<strong>The</strong>se calculations are made <strong>in</strong> the conditions <strong>of</strong> EDF<br />

tests and give a comparison (Table 3.3) between this<br />

extension and tests with<strong>in</strong> several hypotheses.<br />

Span [m] Maximum tensile force [N]<br />

case 9 l<strong>in</strong>k 1 l<strong>in</strong>k 2<br />

68 22051 22469 22276<br />

(+1,9%) (+1%)<br />

34 10532 11698 12758<br />

(+11%) (+21%)<br />

Table 3.3 Influence <strong>of</strong> l<strong>in</strong>k<strong>in</strong>g conditions<br />

L<strong>in</strong>k 1 : δM = arccos(χ)<br />

L<strong>in</strong>k 2 : δM IEC 60865 (*31)<br />

e) Influence <strong>of</strong> reclos<strong>in</strong>g <strong>in</strong>terval<br />

Reclosure operates on a structure that is already <strong>in</strong><br />

movement because <strong>of</strong> the <strong>in</strong>itial fault and depend<strong>in</strong>g on<br />

whether the second fault occurs with<strong>in</strong> a cable<br />

acceleration or deceleration stage (ris<strong>in</strong>g to the first gap,<br />

drop), the <strong>in</strong>fluence <strong>of</strong> <strong>mechanical</strong> and geometrical<br />

stresses thus differs : either the effect <strong>of</strong> reclosure is<br />

comb<strong>in</strong>ed with that <strong>of</strong> the <strong>in</strong>itial fault, amplify<strong>in</strong>g the<br />

stress, or its effect opposes the movement <strong>of</strong> the cables<br />

caused by the <strong>in</strong>itial fault and thus reduces forces,<br />

contribut<strong>in</strong>g to damp<strong>in</strong>g their rock<strong>in</strong>g motion.<br />

It will be observed that :<br />

a) reclosure can cause larger forces than a simple fault.<br />

This is the hypothesis reta<strong>in</strong>ed <strong>in</strong> IEC 60865 on rigid<br />

conductors.<br />

b) a small proportion <strong>of</strong> faults occurr<strong>in</strong>g on reclosure<br />

leads to forces exceed<strong>in</strong>g those <strong>of</strong> the <strong>in</strong>itial fault.<br />

c) a reclos<strong>in</strong>g <strong>in</strong>terval will enable the structure to damp<br />

out its oscillations before reclosure occurs and thus<br />

contributes to reduc<strong>in</strong>g the maximum force obta<strong>in</strong>ed<br />

on reclosure.<br />

Knowledge <strong>of</strong> the most stress<strong>in</strong>g reclosure <strong>in</strong>stant is <strong>of</strong><br />

<strong>in</strong>terest for the eng<strong>in</strong>eer. <strong>The</strong> optimum force <strong>of</strong> drop<br />

after reclosure is <strong>in</strong>deed obta<strong>in</strong>ed slightly after the

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!