24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tension dur<strong>in</strong>g the <strong>short</strong>-<strong>circuit</strong><br />

<strong>The</strong> <strong>mechanical</strong> tension given by this relation leads to<br />

the study <strong>of</strong> the follow<strong>in</strong>g function :<br />

y = 3.cos δ + 3. r2.s<strong>in</strong>δ− 2χ<br />

i<br />

s<strong>in</strong>ce δδδδ ′<br />

2 is always positive, the follow<strong>in</strong>g relation is<br />

true : cos δ + .s<strong>in</strong> δ ≥ χ<br />

r2 i<br />

<strong>The</strong> consequence is : y ≥ χχχχ i .<br />

<strong>The</strong> maximum <strong>of</strong> the tension is reached when<br />

δδδδ = δδδδ 12 , . Effectively the derived value is equal to 0<br />

for this value :<br />

dy<br />

=− 3.s<strong>in</strong> δ + 3. r2<br />

.cos δ = 0<br />

dδ<br />

tg δ = r δ = δ<br />

2 1, 2<br />

This maximum has a value :<br />

2<br />

y = 3. 1+ r − 2χ<br />

M 2 i<br />

This maximum is reached for<br />

t M<strong>in</strong> ( )<br />

T ⎛ res2<br />

⎞<br />

1 = ⎜ k.<br />

π −ϕ<br />

⎟<br />

k ⎝ 2π<br />

⎠<br />

if ϕ < 0 then k = 0 else ϕ > 0 k = 1<br />

<strong>The</strong> variation <strong>of</strong> the tension between the start<strong>in</strong>g<br />

position y=1 and this maximum is equal to :<br />

2<br />

∆y = y − y = 3 1+ r −1− 2<br />

. .χ If<br />

M M o 2<br />

i<br />

≥ then ϕ 2 =∆yM else<br />

Tk2 t1<br />

Tk2 with<br />

< t1 ϕ 2 = ∆ y<br />

∆y = 3.cos δ + r .s<strong>in</strong>δ<br />

− 2χ −1<br />

( )<br />

k2 2 k2 i<br />

<strong>The</strong> tension at anchor<strong>in</strong>g po<strong>in</strong>ts dur<strong>in</strong>g this second<br />

<strong>short</strong>-<strong>circuit</strong> is given by the equation (*34). For the<br />

equation (*33), the <strong>in</strong>fluence <strong>of</strong> the heat<strong>in</strong>g due to the<br />

first <strong>short</strong>-<strong>circuit</strong> can also be analyzed.<br />

Influence <strong>of</strong> the first-fault heat<strong>in</strong>g<br />

In IEC 60865, the heat<strong>in</strong>g is not taken <strong>in</strong>to account<br />

dur<strong>in</strong>g the movement. <strong>The</strong> heat<strong>in</strong>g is used to estimate<br />

the distance between the two conductors ( CD ).<br />

But <strong>in</strong> case <strong>of</strong> a reclosure, it is necessary to<br />

understand the <strong>in</strong>fluence <strong>of</strong> the first-fault heat<strong>in</strong>g :<br />

-<strong>in</strong> the state change equation for the tensile force<br />

dur<strong>in</strong>g the second <strong>short</strong>-<strong>circuit</strong>.<br />

-on the second <strong>short</strong>-<strong>circuit</strong> drop force.<br />

129<br />

<strong>The</strong> applied force dur<strong>in</strong>g a <strong>short</strong>-<strong>circuit</strong> F t to<br />

anchor<strong>in</strong>g po<strong>in</strong>ts is given by the relation (*34).<br />

<strong>The</strong> equation for state changes allows calculation <strong>of</strong><br />

tensions at anchor<strong>in</strong>g po<strong>in</strong>ts by the use <strong>of</strong> the formula<br />

<strong>of</strong> the IEC 60865, described <strong>in</strong> (*33).<br />

<strong>The</strong> heat<strong>in</strong>g modifies this change state equation as<br />

follow<strong>in</strong>g :<br />

3 3 2 * 2<br />

*<br />

+ 2 + + + 1+ 2 + 2<br />

( )<br />

( ) ( )<br />

ϕ ψ ϕ ζ ζ ψ ϕ ζ ζ ψ<br />

*<br />

− ζ 2 + ϕ ϕ + ζ = 0<br />

* α. ∆θ. Es .<br />

=<br />

with ζ<br />

F st<br />

<strong>The</strong> drop force can change with the heat<strong>in</strong>g . <strong>The</strong> IEC<br />

60865 does not take <strong>in</strong>to account this <strong>in</strong>fluence. It is<br />

also neglected here because this heat<strong>in</strong>g <strong>in</strong>fluence is<br />

very low.<br />

Value <strong>of</strong> angle at the end <strong>of</strong> the second <strong>short</strong><strong>circuit</strong>.<br />

⎛ Tk2<br />

⎞<br />

δ k2 = δ1, 2 + ( δ i −δ1,<br />

2)<br />

cos⎜<br />

2π<br />

⎟ +<br />

⎝ Tres2<br />

⎠<br />

Tres2δ′ i ⎛ Tk2<br />

⎞<br />

s<strong>in</strong>⎜2π<br />

⎟<br />

2π<br />

⎝ T ⎠<br />

res2<br />

2<br />

2 8π<br />

δ ′ k2= [ r δ k + δ k − χ<br />

2 2.s<strong>in</strong> 2 cos 2 i]<br />

T<br />

Free movement after the <strong>short</strong>-<strong>circuit</strong><br />

<strong>The</strong> equation (4.4 volume 1 <strong>of</strong> [Ref 1]) is the rule for<br />

the movement. Its first range l<strong>in</strong>ked with the above<br />

conditions leads to :<br />

[ r2 k2 i ]<br />

2 2<br />

δ′ = 2ω cos δ + .s<strong>in</strong>δ<br />

− χ<br />

<strong>The</strong> maximum angle δ m2<br />

after the second <strong>short</strong><strong>circuit</strong><br />

is given by :<br />

cos<br />

= r<br />

( δ m2<br />

) = χ i − r2.<br />

s<strong>in</strong>δ<br />

k 2<br />

( s<strong>in</strong>δ<br />

− s<strong>in</strong>δ<br />

) + cos(<br />

δ )<br />

2<br />

i<br />

k 2<br />

Work <strong>of</strong> LAPLACE forces<br />

Work <strong>of</strong> LAPLACE forces after the first <strong>short</strong> -<br />

<strong>circuit</strong> is given by :<br />

T = Mg 0.<br />

8b<br />

r.<br />

s<strong>in</strong> δ<br />

L1<br />

= Mg 0.<br />

8b<br />

c<br />

c ( k )<br />

( 1−<br />

cos(<br />

δ ) )<br />

m<br />

Work <strong>of</strong> LAPLACE forces after the second <strong>short</strong> -<br />

<strong>circuit</strong> is expressed by :<br />

m

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!