24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5.2.3.1 PRIMARY VARIABLES<br />

<strong>The</strong> <strong>mechanical</strong> loads <strong>in</strong> a substation due to <strong>short</strong><br />

<strong>circuit</strong>s depend on:<br />

- the high-voltage and low-voltage structural design,<br />

- the amplitude <strong>of</strong> the fault <strong>currents</strong> and their<br />

distribution over the busbars,<br />

- the <strong>in</strong>stant <strong>of</strong> occurrence <strong>of</strong> faults,<br />

- the time constant <strong>of</strong> the networks,<br />

- the clearance times,<br />

- but also, <strong>in</strong> the event <strong>of</strong> a reclosure, the isolat<strong>in</strong>g<br />

time and the parameters <strong>of</strong> the possible second <strong>short</strong><br />

<strong>circuit</strong>,<br />

- the variation <strong>in</strong> concomitant parameters such as<br />

temperature, w<strong>in</strong>d, ice, etc.<br />

Many <strong>of</strong> the above are random parameters.<br />

Given the random nature <strong>of</strong> these parameters, the<br />

conservative approach is to consider the maximum<br />

number <strong>of</strong> stresses under the worst conditions and<br />

assume no limits or choices. Hence, this approach<br />

may result <strong>in</strong> expensive over-siz<strong>in</strong>g associated with<br />

low probabilities <strong>of</strong> occurrence.<br />

We propose to def<strong>in</strong>e the broad outl<strong>in</strong>e <strong>of</strong> a<br />

probabilistic approach draw<strong>in</strong>g on exist<strong>in</strong>g<br />

approaches (Ontario Hydro, IEC 60826 on overhead<br />

l<strong>in</strong>es [Ref 93]).<br />

By classify<strong>in</strong>g the penaliz<strong>in</strong>g situations accord<strong>in</strong>g to<br />

their probability <strong>of</strong> occurrence, we can approach the<br />

ultimate stress load<strong>in</strong>g frequencies and set a rule <strong>of</strong><br />

choice <strong>in</strong> order to determ<strong>in</strong>e:<br />

• either the assumptions to be made, depend<strong>in</strong>g on<br />

the climatic, electrical and structural (HV, LV)<br />

stresses,<br />

In that respect, the comb<strong>in</strong>ed load (W<strong>in</strong>d + Short<br />

Circuit) <strong>of</strong>fers an alternative to the arbitrary choice <strong>of</strong><br />

a higher safety factor for the isolated electrodynamic<br />

assumption.<br />

• or the conditions for rebuild<strong>in</strong>g or re<strong>in</strong>forc<strong>in</strong>g an<br />

exist<strong>in</strong>g substation. <strong>The</strong> analyses <strong>in</strong> progress focus on<br />

this aspect, and more specifically the largest rigid<br />

structures, when the primary busbars are concerned.<br />

Here, we propose to def<strong>in</strong>e the ma<strong>in</strong> features <strong>of</strong> a<br />

probabilistic approach on the basis <strong>of</strong> an exist<strong>in</strong>g<br />

approach.<br />

5.2.3.1.1. Short-Circuit Currents<br />

<strong>The</strong> amplitude <strong>of</strong> the fault current depends on the<br />

type <strong>of</strong> fault, the number <strong>of</strong> generat<strong>in</strong>g sets <strong>in</strong> service,<br />

the network layout (number <strong>of</strong> transformers or l<strong>in</strong>es<br />

connected at a given <strong>in</strong>stant), and the location <strong>of</strong> the<br />

faults (substation, l<strong>in</strong>es).<br />

In seek<strong>in</strong>g the maximum electrodynamic loads on<br />

rigid busbars, the most significant faults are<br />

polyphase.<br />

81<br />

a) An <strong>in</strong>itial approach to the variability <strong>of</strong> fault<br />

current amplitudes is shown <strong>in</strong> the Figure 5.8 below.<br />

<strong>The</strong> various distribution functions concern<strong>in</strong>g the<br />

<strong>in</strong>tensity <strong>of</strong> three-phase <strong>short</strong>-<strong>circuit</strong> <strong>currents</strong> are<br />

plotted on the follow<strong>in</strong>g graph:<br />

%<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Cumulative distribution function<br />

0 10 20 30 40 50 60 70 80 90 100<br />

%I/Imaximum<br />

Intensity A<br />

Intensity B<br />

Intensity C<br />

Figure 5.8 the different distribution functions for the <strong>in</strong>tensity <strong>of</strong><br />

<strong>short</strong>-<strong>circuit</strong> <strong>currents</strong>.<br />

Intensity A: C.D.F. <strong>of</strong> the <strong>short</strong>-<strong>circuit</strong> current <strong>in</strong> a<br />

substation due to variation over the year. <strong>The</strong><br />

variation over the year <strong>in</strong> the amplitude <strong>of</strong> the <strong>short</strong><strong>circuit</strong><br />

current (Intensity A) is noticeable <strong>in</strong> the<br />

networks where the ma<strong>in</strong> generat<strong>in</strong>g units are located,<br />

but may be reduced <strong>in</strong> certa<strong>in</strong> networks, when<br />

transformers supply the power. In this case, it may be<br />

more practical to take a fixed value <strong>of</strong> the current.<br />

Intensity B: C.D.F. <strong>of</strong> the <strong>short</strong>-<strong>circuit</strong> current<br />

pass<strong>in</strong>g through a substation for a <strong>short</strong> <strong>circuit</strong> located<br />

on the connected l<strong>in</strong>es, calculated at the <strong>in</strong>stant <strong>of</strong><br />

maximum <strong>short</strong>-<strong>circuit</strong> power for that substation,<br />

At a constant <strong>short</strong>-<strong>circuit</strong> power, the impedance <strong>of</strong><br />

the l<strong>in</strong>es reduces the amplitude <strong>of</strong> the fault current as<br />

a function <strong>of</strong> the latter's distance.<br />

Intensity C: the comb<strong>in</strong>ation <strong>of</strong> curves A and B thus<br />

concerns the variation <strong>in</strong> the fault current pass<strong>in</strong>g<br />

through a substation as a function <strong>of</strong> the location <strong>of</strong><br />

the fault and the time <strong>of</strong> year.<br />

b) A second approach, which is very useful and<br />

practical, concerns constant <strong>short</strong>-<strong>circuit</strong> <strong>in</strong>tensity<br />

analysis.<br />

<strong>The</strong> system manager <strong>of</strong>ten considers the peak<br />

withstand current <strong>of</strong> a substation. In the event <strong>of</strong> a<br />

predictable overload, the manager will need to take<br />

steps to operate the substation as several electric<br />

nodes (7.2.3.2.2.7.) or to upgrade the station to<br />

<strong>in</strong>crease <strong>short</strong> <strong>circuit</strong> capability. In such situations,<br />

the language <strong>of</strong> probabilities is highly useful <strong>in</strong><br />

evaluat<strong>in</strong>g a <strong>mechanical</strong> risk <strong>of</strong> failure for the<br />

different substation layouts,.In particular when nodes<br />

are <strong>in</strong>terconnected <strong>in</strong> order to transfer a load from one<br />

node to another, the risks <strong>of</strong> network weaken<strong>in</strong>g due

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!