24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Table 2.3: Factor γ for different supports<br />

type <strong>of</strong> beam and support γ<br />

s<strong>in</strong>gle span beam cont<strong>in</strong>uous beam with equidistant supports<br />

A and B:<br />

supported<br />

A: fixed<br />

B: supported<br />

A and B:<br />

fixed<br />

two spans<br />

3 or more spans<br />

a) b)<br />

l<br />

k = 1<br />

k = 2<br />

k = 3<br />

l s<br />

l s<br />

l s<br />

l s<br />

k = 4 ls ≈ 0,2l<br />

22<br />

ls l 0,5 ≈<br />

ls ≈ 0,33l<br />

to 0,5l<br />

ls ≈ 0,25l<br />

perpendicular to the surface<br />

<strong>in</strong> direction <strong>of</strong> surface<br />

Figure 2.9 Ma<strong>in</strong> conductor consist<strong>in</strong>g <strong>of</strong> sub-conductors<br />

a) Arrangement <strong>of</strong> connect<strong>in</strong>g pieces with<strong>in</strong> the span b) Direction <strong>of</strong> oscillation<br />

<strong>The</strong> connect<strong>in</strong>g pieces are taken <strong>in</strong>to account by<br />

additional masses mz which are distributed over the n<br />

sub-conductors and weighted by the <strong>in</strong>fluence factor ξm:<br />

(2.39)<br />

ω<br />

2<br />

=<br />

m′<br />

s<br />

c<br />

+ ξ<br />

F<br />

m<br />

1<br />

=<br />

ω<br />

m<br />

1+<br />

ξm<br />

nm<br />

l<br />

1 cF<br />

=<br />

mz<br />

l mz<br />

m<br />

1<br />

s′<br />

+ ξm<br />

n nm′<br />

l<br />

z<br />

s′<br />

with ω= 2πf0. Hence the frequency f follows with the<br />

factor cm:<br />

(2.40) 0 m 0<br />

2π<br />

mz<br />

1+<br />

ξm<br />

nms′<br />

l<br />

2<br />

0<br />

ω 1<br />

f = =<br />

f = c<br />

s<br />

f<br />

1,57<br />

2,45<br />

3,56<br />

ξm depends on the number k and the position ls/l <strong>of</strong><br />

connect<strong>in</strong>g pieces; mz is the total mass <strong>of</strong> one piece. ξm<br />

is now calculated from the actual frequency <strong>of</strong> the ma<strong>in</strong><br />

conductor. An upper limit can be ga<strong>in</strong>ed analytically by<br />

use <strong>of</strong> the Rayleigh-quotient [Ref 29, Ref 30], which<br />

compares the maximum k<strong>in</strong>etic energy Umax when<br />

pass<strong>in</strong>g the rest position with the maximum energy Emax<br />

<strong>in</strong> the reversal <strong>of</strong> direction <strong>of</strong> movement dur<strong>in</strong>g the<br />

undamped oscillation [Ref 31]<br />

2<br />

(2.41) U max = Emax<br />

= ω E max<br />

Hence the Rayleigh-quotient is :<br />

(2.42)<br />

where<br />

2 U<br />

R = ω =<br />

E<br />

max<br />

max

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!