24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

centers are normally balanced by bar sections, <strong>in</strong><br />

order to m<strong>in</strong>imize the current flows and risks. Under<br />

such conditions, the electrodynamic stresses are very<br />

<strong>of</strong>ten noticeably reduced compared to the more<br />

penaliz<strong>in</strong>g layouts. <strong>The</strong> stresses and operat<strong>in</strong>g<br />

practices very <strong>of</strong>ten narrow down the number <strong>of</strong><br />

possible scenarios to only a few cases. It then<br />

becomes feasible to achieve a good order <strong>of</strong><br />

magnitude for the electrodymanic stresses likely to<br />

occur <strong>in</strong> such operat<strong>in</strong>g situations.<br />

5.2.3.2.3. Flexible Busbars<br />

<strong>The</strong> dynamic response <strong>of</strong> the cables <strong>of</strong>ten m<strong>in</strong>imizes<br />

the quadratic variation <strong>of</strong> the Laplace force depend<strong>in</strong>g<br />

on the <strong>in</strong>tensity <strong>of</strong> the current. Adaptations <strong>of</strong><br />

simplified methods were developed specifically for<br />

bundle cable connections [Ref 90]. This aspect is<br />

currently be<strong>in</strong>g exam<strong>in</strong>ed.<br />

5.2.3.3 CALCULATING THE DISTRIBUTION OF<br />

MECHANICAL LOADS<br />

On the basis <strong>of</strong> the elementary distributions <strong>of</strong><br />

primary variables, we can, for example, associate a<br />

bend<strong>in</strong>g force FI ( , ϕ, V,<br />

θ ) with an amplitude<br />

probability density f ( I) . g( ϕ) . hV ( , θ ) . This is<br />

the case for the cumulative distribution function<br />

(C.D.F.) below, correspond<strong>in</strong>g to the case I=constant<br />

dur<strong>in</strong>g a three-phase fault <strong>in</strong> a transfer situation (two<br />

busbars).<br />

%<br />

Cumulative Distribution Function <strong>of</strong> loads<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0% 20% 40% 60%<br />

ratio Load / Fo<br />

80% 100% 120%<br />

Figure 5.16 Fo(L) overall view <strong>of</strong> C.D.F.<br />

88<br />

%<br />

2,0<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

Cumulative Distribution Function <strong>of</strong> loads<br />

90% 100% 110% 120% 130% 140%<br />

ratio loads / Fo<br />

Figure 5.17 Fo(L) extremity <strong>of</strong> C.D.F<br />

Fo : design loads<br />

<strong>The</strong> irregularities <strong>of</strong> these function are the result <strong>of</strong><br />

discretization. This type <strong>of</strong> function can nevertheless<br />

be approached us<strong>in</strong>g an analytical method.<br />

Case with one random variable<br />

If we consider only the variable ϕ, the distribution<br />

function <strong>of</strong> stress accord<strong>in</strong>g to (5.12) takes the<br />

follow<strong>in</strong>g form for a uniform distribution:<br />

(5.20) ( )<br />

FC<br />

m<br />

m I C<br />

21 ( + ) 2<br />

arccos( 2 . −1− )<br />

= . α.<br />

m<br />

π<br />

where the values are def<strong>in</strong>ed <strong>in</strong> the <strong>in</strong>terval [Cm<strong>in</strong>(I), Cmax(I)] with Cmax(I)=αI² and Cm<strong>in</strong>(I)= αI²/(1+m).<br />

Outside this <strong>in</strong>terval, the follow<strong>in</strong>g extension is<br />

adopted: FC ( ) = 1, if C< Cm<strong>in</strong>(I) and FC ( ) = 0 , if<br />

C> Cmax(I). %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Figure 5.18<br />

Cumulative Distribution Function <strong>of</strong> loads<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9<br />

Loads / Fo<br />

1<br />

Uniform Distribution<br />

Beta Distribution<br />

For a non-uniform phase distribution, for example a<br />

Beta distribution, condensed over the <strong>in</strong>terval [0,π/2]<br />

established on the basis <strong>of</strong> the data <strong>in</strong> Figure 5.9, we<br />

can plot the second curve <strong>of</strong> Figure 5.18 on which the<br />

maximum load values are less probable. With a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!