24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

C.D.F. ϕ given by Φϕ ( ϕ ) , we would obta<strong>in</strong> the<br />

follow<strong>in</strong>g load distribution:<br />

m<br />

FC ( )<br />

m I C<br />

⎛<br />

21 ( + ) 2 ⎞<br />

⎜ arccos( . −1− )<br />

2<br />

⎟<br />

= Φ ⎜<br />

m<br />

ϕ ϕ o +<br />

. α.<br />

⎟<br />

⎜<br />

2<br />

⎟<br />

⎝<br />

⎠<br />

Case with several random variables<br />

If g(V) is the w<strong>in</strong>d distribution, the C.D.F. <strong>of</strong> loads is<br />

given by:<br />

( )<br />

= ∞<br />

∫0 Ψ CI , gV ( ). FCVI ( , , ). dV<br />

with<br />

21 ( + m)<br />

2 2<br />

arccos( 2 .( C−βV ) −1− )<br />

FCV ( , , I)<br />

= m. α.<br />

I<br />

m<br />

π<br />

ignor<strong>in</strong>g own weight and assum<strong>in</strong>g that the w<strong>in</strong>d is<br />

perpendicular to the tubes.<br />

Similarly, if we know the distribution <strong>of</strong> the current<br />

h(I), we can write:<br />

ax<br />

Κ( C) = ∫ ∫ g V h I F C V I dV dI<br />

∞ Im<br />

( ). ( ). ( , , ). .<br />

0<br />

Im<strong>in</strong><br />

Comb<strong>in</strong>ation <strong>of</strong> various faults<br />

<strong>The</strong> load distribution function can be calculated by<br />

weight<strong>in</strong>g the distributions <strong>of</strong> the various types <strong>of</strong><br />

fault as <strong>in</strong>dicated below:<br />

F( S) = F1( S) . pr( phasetoearth)<br />

+<br />

2( )<br />

with F( S)<br />

+ 3(<br />

)<br />

on a phase to earth fault, F ( S)<br />

fault, F ( S)<br />

F S . pr( phasetophase) F S . pr( threephase)<br />

1 correspond<strong>in</strong>g to the fault distribution<br />

2 a phase to phase<br />

3 a three-phase fault, and with<br />

pr( phasetoearth) + pr( phasetophase) + pr( threephase)<br />

=1<br />

. In this case, the (λ,η) parameters <strong>of</strong> 5.2.3.8 must be<br />

adjusted accord<strong>in</strong>gly.<br />

5.2.3.4 CHARACTERIZATION OF MECHANICAL<br />

STRENGTH<br />

<strong>The</strong> <strong>mechanical</strong> strength <strong>of</strong> the various components<br />

(post <strong>in</strong>sulator break<strong>in</strong>g load, yield strength <strong>of</strong><br />

metallic structures: tube, tower, substructure, etc.) is<br />

also a random variable dependent upon the<br />

manufactur<strong>in</strong>g characteristics <strong>of</strong> the various<br />

components.<br />

<strong>The</strong> curve below gives an example <strong>of</strong> variation <strong>in</strong><br />

break<strong>in</strong>g load for a ceramic post <strong>in</strong>sulator:<br />

89<br />

3,0%<br />

2,5%<br />

2,0%<br />

1,5%<br />

1,0%<br />

0,5%<br />

0,0%<br />

Cumulative Distribution function <strong>of</strong><br />

Strength<br />

0,7 0,8 0,9 1 1,1 1,2<br />

Strength / Specified m<strong>in</strong>imum fail<strong>in</strong>g load<br />

Figure 5.19 Strength distribution function<br />

This figure is based on manufacturer's data<br />

established us<strong>in</strong>g a Gaussian strength distribution<br />

G L<br />

1 L−a ⎛ ⎞ ∞<br />

2<br />

− ( )<br />

2 σ ⎜ ⎟ = e dL<br />

⎝ FR<br />

⎠ ∫ . . <strong>The</strong> mean value is <strong>in</strong><br />

0<br />

G<br />

this case between 1.4 and 1,5 FR and the standard<br />

G<br />

deviation σ is around 16% <strong>of</strong> FR . <strong>The</strong>se data can be<br />

obta<strong>in</strong>ed from major equipment manufacturers.<br />

5.2.3.5 CALCULATING THE RISK OF FAILURE<br />

<strong>The</strong> variation <strong>of</strong> the risk <strong>in</strong>tegral as a function <strong>of</strong> Γ or<br />

G<br />

rather <strong>of</strong> its reverse Fo/ FR is plotted below <strong>in</strong> semilogarithmic<br />

coord<strong>in</strong>ates:<br />

Risk<br />

1,E-02<br />

1,E-04<br />

1,E-05<br />

1,E-06<br />

1,E-07<br />

Risk<br />

0,7 0,8 0,9 1,0 1,1 1,2<br />

1,E-03<br />

Figure 5.20 Risk <strong>in</strong>tegral<br />

Fo / Specified m<strong>in</strong>imum fail<strong>in</strong>g load<br />

We note that a 10% variation <strong>in</strong> this ratio causes the<br />

risk <strong>in</strong>tegral to vary by a factor <strong>of</strong> 3 to 10, depend<strong>in</strong>g<br />

G<br />

on the operat<strong>in</strong>g po<strong>in</strong>t Fo/ FR . With the 0.7 safety<br />

factor recommended by CIGRE, for comb<strong>in</strong>ed <strong>short</strong><strong>circuit</strong><br />

and w<strong>in</strong>d loads represented <strong>in</strong> 5.2.3.3 (Figure<br />

5.16 and Figure 5.17), the risk <strong>in</strong>tegral is here around<br />

10 -6 for one post <strong>in</strong>sulator.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!