12.07.2015 Views

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadFeedbacks Am<strong>on</strong>g Biomass Distributi<strong>on</strong>, Relative Elevati<strong>on</strong>and Sea-Level RiseSubstituting for B in Eq. 1 yields <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>that describes <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute change in elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marshsurface as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> depth:dY/dt = [q + k i(a iD + b iD 2 + c i)]D, for D>0 (3)Equati<strong>on</strong> 3 was solved numerically for a hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ticalmarsh landscape with <strong>on</strong>e or two species differing in <str<strong>on</strong>g>the</str<strong>on</strong>g>irbiomass distributi<strong>on</strong>s. The time-zero marsh elevati<strong>on</strong> andrates <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise were set arbitrarily and model simulati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> 120-yr durati<strong>on</strong> were generated to allow time forc<strong>on</strong>vergence <strong>on</strong> a dynamic steady state. A rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-levelrise <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 0.2 or 0.8 cm/yr was specified, and a sinusoidalfuncti<strong>on</strong> was used to simulate changes in tidal amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g>± 2.5 cm over <str<strong>on</strong>g>the</str<strong>on</strong>g> 18.6-yr lunar nodal cycle, centered abouta mean tidal amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.6 m. The coefficient values forq and k were set at 0.00018 yr -1 and 1.5 × 10 -5 cm m 2 g -1 yr -1(0.15 cm 3 g -1 yr -1 ). These parameter values were taken froma calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model to North Inlet data (Morris etal. 2002). In additi<strong>on</strong>, species distributi<strong>on</strong>s were varied inorder to explore effects <strong>on</strong> equilibrium elevati<strong>on</strong> and speciespersistence. Species distributi<strong>on</strong>s (Eq. 2) were describedby specifying a maximum biomass and optimum elevati<strong>on</strong>,operati<strong>on</strong>ally defined here as <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> that results in <str<strong>on</strong>g>the</str<strong>on</strong>g>greatest biomass density, and species range, defined as <str<strong>on</strong>g>the</str<strong>on</strong>g>upper and lower depth limits.RESULTS AND DISCUSSIONThe Single Species ExampleWhen <str<strong>on</strong>g>the</str<strong>on</strong>g> model was solved for a single species witha distributi<strong>on</strong> between 15 and 30 cm above mean sea level(Fig. 1A), and a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 cm/yr, <str<strong>on</strong>g>the</str<strong>on</strong>g> marshsurface elevati<strong>on</strong> equilibrated at about 26 cm above mean sealevel and a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 34 ± 2.9 cm (mean ± amplitude) belowMHHW (Fig 1B). This elevati<strong>on</strong> is above <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum elevati<strong>on</strong>specified in Fig. 1A, which is a c<strong>on</strong>diti<strong>on</strong> for stability(Morris et al. 2002). The c<strong>on</strong>straint <strong>on</strong> productivity imposedby high pore-water salinities that develop at super-optimalelevati<strong>on</strong>s is an important factor in maintaining relativeelevati<strong>on</strong>, because a rise in relative sea level brings about anincrease in flooding, decreases pore water salinity (Morris1995), and increases biomass density (Morris 2000). Theincrease in biomass density will enhance sediment depositi<strong>on</strong>by increasing sediment trapping efficiency (Gleas<strong>on</strong> etal. 1979, Le<strong>on</strong>ard & Lu<str<strong>on</strong>g>the</str<strong>on</strong>g>r 1995, Yang 1998).MHHW varies over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 18.6-yr lunar nodalcycle by ± 2.5 cm. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh surfacebelow MHHW varies at <str<strong>on</strong>g>the</str<strong>on</strong>g> same frequency (Fig. 1B), resultingin a cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> standing biomass with a range <str<strong>on</strong>g>of</str<strong>on</strong>g> 296 g/m 2(Fig. 1C). This is c<strong>on</strong>sistent with empirical measurementsfrom North Inlet, SC where we have seen changes in S.alterniflora productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> 248 g m -2 yr -1 over <str<strong>on</strong>g>the</str<strong>on</strong>g> lunar nodalcycle. It should be noted that MHHW varies independently<str<strong>on</strong>g>of</str<strong>on</strong>g> MSL owing to l<strong>on</strong>g-period astr<strong>on</strong>omical forcing, e.g. <str<strong>on</strong>g>the</str<strong>on</strong>g>lunar nodal cycle, but MHHW will also vary directly withchanges in MSL. C<strong>on</strong>sequently, MHHW is a better tidaldatum for purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> defining <str<strong>on</strong>g>the</str<strong>on</strong>g> growth ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidalspecies than is MSL.Result <str<strong>on</strong>g>of</str<strong>on</strong>g> Adding a Competitor with Wider Distributi<strong>on</strong> andHigh BiomassWhen a competing species was added to <str<strong>on</strong>g>the</str<strong>on</strong>g> model witha distributi<strong>on</strong> like that <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 in Fig. 2A, species 1was eliminated within about 10 yr (Fig. 2C). Examples arecomm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this type <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Fig. 1 Model results with a single species (S1), distributed as above (A), and a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 cm/yr, as shown in B. Panel C shows <str<strong>on</strong>g>the</str<strong>on</strong>g>predicted biomass trajectory as (B) <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface equilibrates at a relative surface elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 25 cm above mean sea level (MSL) and a depthbelow MHHW <str<strong>on</strong>g>of</str<strong>on</strong>g> about 35 cm.- 111 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!