12.07.2015 Views

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadFig.4. Model results with <strong>on</strong>e species with a biomass distributi<strong>on</strong> as above (A) and a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 cm/yr. Shown in panel C is <str<strong>on</strong>g>the</str<strong>on</strong>g> predictedbiomass trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 as (B) <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface equilibrates at an elevati<strong>on</strong> below MSL and outside <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2’s range. Parameter values wereo<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise identical to those in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous examples (Fig. 2 and 3).The biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 varied with depth at <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lunar nodal cycle, but 180º out-<str<strong>on</strong>g>of</str<strong>on</strong>g>-phase, whereas<str<strong>on</strong>g>the</str<strong>on</strong>g> lunar nodal cycle and biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> species 1 were in phase(Fig. 3B). The biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 decreased with a rise inMHHW, i.e. as equilibrium depth increased, because <str<strong>on</strong>g>the</str<strong>on</strong>g>marsh surface elevati<strong>on</strong>, 28 cm, was suboptimal for growth.C<strong>on</strong>versely, <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> species 1 increased with a rise inMHHW because surface elevati<strong>on</strong> was super-optimal for itsgrowth. Thus, species can coexist <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically when <str<strong>on</strong>g>the</str<strong>on</strong>g>reis a periodic change in flood durati<strong>on</strong> and when <strong>on</strong>e speciesresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> change positively and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r negatively.This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> several c<strong>on</strong>diti<strong>on</strong>s that promote a facultativeinteracti<strong>on</strong> between species.Facultative interacti<strong>on</strong>s am<strong>on</strong>g marsh macrophytesinvolving ameliorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil salinity have been described(Bertness & Ewanchuk 2002), and simulati<strong>on</strong> results shownhere suggest that biogeomorphological interacti<strong>on</strong>s couldalso be facultative. When two species with overlapping distributi<strong>on</strong>s(Fig. 2A) were present, and <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-levelrise was raised to 0.8 cm/yr, <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting interacti<strong>on</strong> couldbe described as facultative (Fig. 3), because nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r speciespersists in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r (Fig. 4). When species 1was removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium elevati<strong>on</strong>quickly dropped below MSL and below <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limit forspecies 2. Species 1 suffered <str<strong>on</strong>g>the</str<strong>on</strong>g> same fate when species 2was removed. However, at a low rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise, 0.2cm/yr, species 1 did not survive (Fig. 2). Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> outcome<str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> facultative behaviordepend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise.The Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Sea-Level Rise and Alternative Stable StatesIt can also be dem<strong>on</strong>strated that <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh will movetoward alternative stable states or habitat preempti<strong>on</strong> by <strong>on</strong>especies or ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level riseand <str<strong>on</strong>g>the</str<strong>on</strong>g> species’ biomass distributi<strong>on</strong>s. When <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sealevelrise was 0.8 cm/yr and <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species 1 wasmodified by raising its maximum biomass to equal that <str<strong>on</strong>g>of</str<strong>on</strong>g>species 2 (Fig. 5A), <strong>on</strong>ly species 1 persisted throughout <str<strong>on</strong>g>the</str<strong>on</strong>g>simulati<strong>on</strong>, while species 2 was intermittent (Fig. 5C). Themarsh surface equilibrated at an elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 23 cm(Fig. 5B), which was at <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limit <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 and above<str<strong>on</strong>g>the</str<strong>on</strong>g> optimum elevati<strong>on</strong> for species 1 (Fig. 5A). Keeping <str<strong>on</strong>g>the</str<strong>on</strong>g>species distributi<strong>on</strong>s as in Fig. 5A and lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>sea-level rise to 0.2 cm/yr resulted in a different outcome. Atthis lower rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise, <strong>on</strong>ly species 2 persisted (Fig.6C). The marsh surface equilibrated at an elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about46 cm (Fig. 6A), which is above <str<strong>on</strong>g>the</str<strong>on</strong>g> upper limit <str<strong>on</strong>g>of</str<strong>on</strong>g> species 1and above <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 (Fig. 5A).CONCLUSIONSThis paper describes a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeomorphology thataddresses how intertidal macrophytes can modify landscapeelevati<strong>on</strong> and affect <str<strong>on</strong>g>the</str<strong>on</strong>g> outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> species interacti<strong>on</strong>sby means <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical geomorphological displacement.Competiti<strong>on</strong> by geomorphogical displacement is indirectand is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental and realized niches thatdescribe species biomass distributi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal frame. Theoutcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive interacti<strong>on</strong>s are a great deal morecomplex than described here when <str<strong>on</strong>g>the</str<strong>on</strong>g>re are direct interferencesor facultative interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sort described byBertness and Ewanchuk (2002). These types <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>scan modify a species’ realized distributi<strong>on</strong>s dynamically andwould result in truly complex behavior.Marsh primary producti<strong>on</strong> and standing biomass aresensitive to hydroperiod and have positive effects <strong>on</strong> sedimentaccreti<strong>on</strong>. In that part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal frame that is higher- 113 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!