12.07.2015 Views

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinathose in Scheffer’s photo can be seen in <str<strong>on</strong>g>the</str<strong>on</strong>g>se photos atwidely separated locati<strong>on</strong>s around <str<strong>on</strong>g>the</str<strong>on</strong>g> bay (Civille et al.2005).A time series analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread across <str<strong>on</strong>g>the</str<strong>on</strong>g>Willapa tidal flats was c<strong>on</strong>ducted using 55 years <str<strong>on</strong>g>of</str<strong>on</strong>g> synopticaerial photography, spanning from 1945 to 2000. Themethodology used for <str<strong>on</strong>g>the</str<strong>on</strong>g> study was a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>photogrammetry, image analysis and geographic informati<strong>on</strong>system (GIS) techniques (Wilkie 1996). Over 2,000 photos(black and white, true color and color infra-red) weredigitized, examined for Spartina plants, <str<strong>on</strong>g>the</str<strong>on</strong>g>n geo- ororthorectified to fit <str<strong>on</strong>g>the</str<strong>on</strong>g> curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> earth and assignedgeographic coordinates. The resulting corrected images were<str<strong>on</strong>g>the</str<strong>on</strong>g>n classified into <str<strong>on</strong>g>the</str<strong>on</strong>g>matic representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinameadows and cl<strong>on</strong>es. The final year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> series, comprised<str<strong>on</strong>g>of</str<strong>on</strong>g> color infrared images acquired in 2000, was orthorectifiedto remove radial and scale distorti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>nclassified through hierarchical supervised and unsupervisedn<strong>on</strong>-parametric methods into 330 <str<strong>on</strong>g>the</str<strong>on</strong>g>matic raster files, withless than <strong>on</strong>e meter positi<strong>on</strong>al error and a 0.3 m minimummapping unit (Civille 2005). All o<str<strong>on</strong>g>the</str<strong>on</strong>g>r spatial data weregeorectified to this baseline layer. These tasks wereaccomplished with a large format scanner (28 x43 centimeter [cm] platform), Photoshop (Adobe), andImagine (ERDAS), a robust digital photogrammetrys<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package. The resulting raster files were <str<strong>on</strong>g>the</str<strong>on</strong>g>nc<strong>on</strong>verted into GIS vector coverages in ArcInfo (ESRI), andcombined with a bathymetry digital elevati<strong>on</strong> model (DEM)to obtain z (elevati<strong>on</strong>) values for each polyg<strong>on</strong>.A vector-based coverage model was chosen for ouranalysis, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than raster-based, because polyg<strong>on</strong>s areautomatically assigned a unique identifier, area andperimeter by ArcInfo s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (Flynn and Pitts 2000). Thisallowed us to extract demographic history for each plant(greater than 300,000 individuals in 1997 al<strong>on</strong>e) that wedetected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> photos. These data were used toparameterize ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical populati<strong>on</strong> models (Taylor et al.2004), and establish <str<strong>on</strong>g>the</str<strong>on</strong>g> ages <str<strong>on</strong>g>of</str<strong>on</strong>g> plants used in genetic andreproductive fitness experiments (Davis et al. 2004).Regi<strong>on</strong>s, which are a higher order organizati<strong>on</strong>al object inArcInfo, were applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> coverages, allowing us toanalyze cl<strong>on</strong>al growth and meadow formati<strong>on</strong> year-to-year.Each c<strong>on</strong>tributing polyg<strong>on</strong> (cl<strong>on</strong>e) within a regi<strong>on</strong> (largemeadow), maintains its own unique identifier and also has aregi<strong>on</strong> identifier, which are maintained through dataextracti<strong>on</strong> and statistical analyses (Civille 2005).Spartina elevati<strong>on</strong> data were analyzed with twoseparate bathymetry (elevati<strong>on</strong>) layers; <strong>on</strong>e that wascollected by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Oceanic and AtmosphericAdministrati<strong>on</strong> (NOAA) with depth soundings in 1953(channels updated in 1986); and ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r that was acquired in<str<strong>on</strong>g>the</str<strong>on</strong>g> spring <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002. The new bathymetry data was collectedwith LiDAR (Light Detecti<strong>on</strong> And Ranging) techniques, andis <str<strong>on</strong>g>the</str<strong>on</strong>g> first <str<strong>on</strong>g>of</str<strong>on</strong>g> its kind to be ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red for an entire estuarineintertidal z<strong>on</strong>e with tidal c<strong>on</strong>trol (Cracknell 1999; Irish andLillycrop 1999; Flowers 2002). Tidal exposure times werecalculated for <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa estuary during winter m<strong>on</strong>thswhen plant aboveground growth has died back, leavingmudflat elevati<strong>on</strong>s as <str<strong>on</strong>g>the</str<strong>on</strong>g> primary targets reflected by <str<strong>on</strong>g>the</str<strong>on</strong>g>laser. Data collecti<strong>on</strong> was scheduled for predicted tidalelevati<strong>on</strong>s lower than 30 cm Mean Low Water (MLW),although <str<strong>on</strong>g>the</str<strong>on</strong>g> actual tidal elevati<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> acquisiti<strong>on</strong>varied from this target (Civille 2005). The LiDAR data wascollected through a collaborative effort with <str<strong>on</strong>g>the</str<strong>on</strong>g> NOAACoastal Services Center in Charlest<strong>on</strong>, South Carolina, anddata was acquired and compiled by photogrammetrists atSpencer B. Gross in Portland, Oreg<strong>on</strong>.To determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r individual Spartina plants weregrowing more rapidly in different abiotic c<strong>on</strong>diti<strong>on</strong>s, weextracted areas from polyg<strong>on</strong>s that overlapped <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>rin separate years. These were assumed to be <str<strong>on</strong>g>the</str<strong>on</strong>g> sameindividual increasing (or diminishing) in area through time.A stratified random selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 408 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se co-occurringcl<strong>on</strong>es was extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> 1994 and 1997 layers, <str<strong>on</strong>g>the</str<strong>on</strong>g>nstatistically analyzed according to a simple relative arealgrowth index [(Area1997-Area1994)/Area1994]. Thisindex relates <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> areal growth to <str<strong>on</strong>g>the</str<strong>on</strong>g> initial size <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> plant. An ANOVA was performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1994-1997data set and significant differences in relative growth rateswere observed between mud and sand substrates and tidalelevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es (Fig. 1). Cl<strong>on</strong>es in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t mudsubstrates with proximity to fresh water sources exhibitedsignificantly higher areal growth rates than those <strong>on</strong> sand.Cl<strong>on</strong>es at higher elevati<strong>on</strong>s in general are growing morequickly than those at lower elevati<strong>on</strong>s, although differenceswere not significant in all elevati<strong>on</strong>al classes. Spartinaplants are noticeably absent from sand substrates lower thanFig. 1: Differences in relative lateral growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina comparingtidal elevati<strong>on</strong> and substrate type, 1994-1997.-84-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!