12.07.2015 Views

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyTable 2. Gross and net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rates collected for high- and lowsalinity,flooded-treatment plants at moderate PPFD (1100 μmol m -2 s -1 ).The mean gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong> and net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticrate <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong> ± SD (n) is given for each species/treatmentcombinati<strong>on</strong>.Species SalinityGross PS rates Net PS rates(μmol O 2 m -2 s -1 ) (μmol CO 2 m -2 s -1 )S. alterniflora 0‰ 40.7 ± 1.0 (3) 11.0 ± 0.8 (3)30‰ 34.4 ± 9.0 (3) 2.9 ± 2.6 (3)S. anglica 0‰ 40.4 ± 5.5 (4) 2.2 ± 1.7 (4)30‰ 41.7 ± 2.6 (4) 5.9 ± 4.4 (4)S. densiflora 0‰ 38.3 ± 12.9 (4) 5.3 ± 7.2 (4)30‰ 46.3 ± 1.7 (4) 3.3 ± 11.4 (4)S. patens 0‰ 48.2 ± 2.5 (3) 16.1 ± 11.4 (3)30‰ 42.0 ± 1.6 (3) 3.0 ± 2.1 (3)D. spicata 0‰ 41.7 ± 13.2 (3) 10.3 ± 2.7 (3)30‰ 41.0 ± 3.3 (4) 6.3 ± 7.0 (4)electr<strong>on</strong> sinks are induced. Some possibilities include(Demmig-Adams and Adams, 1992): CO 2 pump activitymay increase to compensate for bundle sheath CO 2 leakage;this would use additi<strong>on</strong>al ATP generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> Mehlerreacti<strong>on</strong>, and was potentially reflected in lower PSII yieldsin S. alterniflora and S. patens under high salinity (Table 1).Alternatively, an increase in photorespirati<strong>on</strong> could helpsustain gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates if CO 2 levels drop in <str<strong>on</strong>g>the</str<strong>on</strong>g>bundle sheath allowing O 2 to react with RuBP. Ac<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> photorespirati<strong>on</strong> is producing products likePGA and amm<strong>on</strong>ia that need reductive power fromphotochemistry. Increased reducti<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate, sulfate,or phosphate within chloroplasts could utilize excess lightenergy. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r work will be needed to see if nitrate orsulfate reducti<strong>on</strong> or photorespirati<strong>on</strong> rates increase withincreasing salinity. Finally, energy not used inphotochemistry may be dissipated by n<strong>on</strong>photochemicalquenching (NPQ) mechanisms, where excess light energy islost as heat. Maximum amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NPQ increased withsalinity in S. patens and D. spicata (ANOVA, p≤0.073), butin no o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species (ANOVA, p≥0.570; Table 1).Under high light, rates <str<strong>on</strong>g>of</str<strong>on</strong>g> light-harvesting (grossphotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis) will invariably be larger than carb<strong>on</strong> fixati<strong>on</strong>(net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis) rates. Therefore excess energy must besafely dissipated before reacti<strong>on</strong> centers are damaged(Demmig-Adams and Adams 1992). Dark-adapted F V /F Mratios <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll fluorescence can indicate damage to <str<strong>on</strong>g>the</str<strong>on</strong>g>PSII reacti<strong>on</strong> center (Krause and Weis 1991). F V /F M ratioswere not significantly reduced by salinity in any species inthis study (ANOVA, p≥0.165; Table 1), suggesting excessenergy was efficiently dispersed before reacti<strong>on</strong> centers weredamaged. Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photoinhibiti<strong>on</strong> is likely to beimportant in determining plant resistance to envir<strong>on</strong>mentalstresses that reduce carb<strong>on</strong> fixati<strong>on</strong> relative to lightharvesting rates (Demmig-Adams and Adams 1992).The c i /c a values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants in this study ranged from0.35 to 0.61 (Table 1). The c i /c a value <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicasignificantly decreased with increasing salinity at moderatePPFD (ANOVA, p=0.032). The c i /c a values <str<strong>on</strong>g>of</str<strong>on</strong>g> all o<str<strong>on</strong>g>the</str<strong>on</strong>g>rspecies did not change in resp<strong>on</strong>se to increasing salinity(ANOVA, p≥0.421). In previous studies, c i /c a values did notchange with increasing salinity in C 4 grasses (Bowman et al.1989, Meinzer et al. 1994). C 3 leaf c i /c a values tend to behigher than corresp<strong>on</strong>ding C 4 values and are more sensitiveto increasing salinity (Brugnoli and Lauteri 1991).Increasing salinity may decrease C 3 c i /c a values by as muchas 0.48 (Farquhar et al. 1982). In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, c i /c adecreased by 0.20 in S. anglica, and by 0.22 in S. densiflora(n<strong>on</strong>significant change) with 30‰ salinity, but <strong>on</strong>ly as muchas 0.07 in <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species (Table 1). We believe this to be<str<strong>on</strong>g>the</str<strong>on</strong>g> first report <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity-induced decreases in C 4 c i /c avalues. One factor c<strong>on</strong>tributing to salt sensitivity in C 4 plantsmay be <str<strong>on</strong>g>the</str<strong>on</strong>g> susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 leakage from bundle sheathcells under increasing salinity. Increasing salinity appearedto decrease c i /c a in S. anglica, but it was <str<strong>on</strong>g>the</str<strong>on</strong>g> most resistantspecies to salinity in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong>. This suggestsCO 2 pump activity does not increase in S. anglica withincreasing salinity. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> photorespirati<strong>on</strong> or nitratereducti<strong>on</strong> may increase instead to use excess light energy.Excess energy dissipati<strong>on</strong> in resp<strong>on</strong>se to salinity may be anarea for future investigati<strong>on</strong> in marsh halophytes.This work illustrated how light harvesting and CO 2uptake relate to sediment salinity in C 4 marsh grasses.Excess energy dissipati<strong>on</strong> may also increase in times <str<strong>on</strong>g>of</str<strong>on</strong>g>salinity stress. Additi<strong>on</strong>ally, NPQ mechanisms increase inmany plants as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> external salinity. Portableflourometers can easily be used in <str<strong>on</strong>g>the</str<strong>on</strong>g> field to determine invivo NPQ and thus in vivo salt stress in some plants.However, photochemistry does not appear to be affected bysalt, so fluorescence yield measurements in <str<strong>on</strong>g>the</str<strong>on</strong>g> light or darkadaptedF V /F M measures will not reflect salt stress. Inc<strong>on</strong>trast, gas-exchange methods appear to be far moresensitive to salinity.ACKNOWLEDGMENTSThe authors thank C. Cody, P. Rabie, K. Patten, S.Hacker and M. Figueroa for assistance and plants. Thisproject was partially funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Betty W. HiginbothamTrust and a Padilla Bay NERR Research Assistantship. Thisresearch was also supported by NSF IBN0076604, EPA R-82940601, and NSF DBI-0116203.REFERENCESBowman, W.D., K.T. Hubick, S. v<strong>on</strong> Caemmerer, and G.D. Farquhar.1989. Short-term changes in leaf carb<strong>on</strong> isotope discriminati<strong>on</strong>in salt and water stressed C 4 grasses. Plant Physiol. 90:162-166.Brugnoli, E., and M. Lauteri. 1991. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity <strong>on</strong> stomatalc<strong>on</strong>ductance, photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic capacity, and carb<strong>on</strong> isotope discriminati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> salt-tolerant (Gossypium hirsutum L.) and saltsensitive(Phaseolus vulgaris L.) C 3 n<strong>on</strong>-halophytes. PlantPhysiol. 95:628-635.-57-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!