12.07.2015 Views

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinagroups affect porewater amm<strong>on</strong>ium and soluble sulfidewithout plants present. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dexperiment was to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>se same speciesinfluenced <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings. Wepredicted that <str<strong>on</strong>g>the</str<strong>on</strong>g>se three functi<strong>on</strong>al groups would havedifferent effects <strong>on</strong> porewater chemistry resulting indifferential growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings.METHODSWe c<strong>on</strong>ducted microcosm experiments in anenvir<strong>on</strong>mental chamber with a c<strong>on</strong>stant temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 14°Cand a 12-hour light cycle. All organisms and sedimentswere collected from mudflats near <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> a hybridSpartina marsh at <str<strong>on</strong>g>the</str<strong>on</strong>g> Elsie Roemer Bird Sanctuary,Alameda Island, San Francisco Bay, California.Microcosms c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> clear polycarb<strong>on</strong>ate tubes (9.3centimeters inside diameter [cm I.D.] x 30 cm height [H])filled with two layers <str<strong>on</strong>g>of</str<strong>on</strong>g> homogenized, defaunated sediment.The lower layer (12 cm) was seived to 500 micrometers(μm) and <str<strong>on</strong>g>the</str<strong>on</strong>g>n frozen for two weeks to kill any organismsthat passed through <str<strong>on</strong>g>the</str<strong>on</strong>g> seive. The surface layer (3 cm),which was seived to 300 μm, but unfrozen, inoculated <str<strong>on</strong>g>the</str<strong>on</strong>g>core with natural micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora. Following rec<strong>on</strong>structi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>cores acclimated in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental chamber for threedays. Organic matter (<strong>on</strong>e gram [g] dried, ground Ulva sp.)was added to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> each microcosm <strong>on</strong>e day prior toorganism additi<strong>on</strong>. To simulate tidal inundati<strong>on</strong>, wec<strong>on</strong>structed an elaborate, automated system that filled eachchamber with sea water (32 parts per thousand [ppt])halfway through <str<strong>on</strong>g>the</str<strong>on</strong>g> light cycle and drained each chamberhalfway through <str<strong>on</strong>g>the</str<strong>on</strong>g> dark cycle each day.In <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment, we tested <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> threefuncti<strong>on</strong>al feeding groups (subsurface deposit feeders,surface deposit feeders, and surface grazers) <strong>on</strong> porewateramm<strong>on</strong>ium and soluble sulfide c<strong>on</strong>centrati<strong>on</strong>s. Ourexperimental design c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a defaunated c<strong>on</strong>trol andthree single species treatments (n = 6) representing each <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> three functi<strong>on</strong>al groups: <str<strong>on</strong>g>the</str<strong>on</strong>g> capitellid polychaeteHeteromastus filiformis (sub-surface deposit feeder), <str<strong>on</strong>g>the</str<strong>on</strong>g>nassariid snail Ilyanassa obsoleta (surface grazer) and <str<strong>on</strong>g>the</str<strong>on</strong>g>tellinid clam Macoma petalum (surface deposit feeder) wi<str<strong>on</strong>g>the</str<strong>on</strong>g>ight replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment (Table 1). The numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>individuals added to each microcosm were equivalent todensities at <str<strong>on</strong>g>the</str<strong>on</strong>g> Elsie Roemer site (see Neira et al. 2005).We extracted porewater from depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 2, 4, and 7 cm usingTable 1: Design for Experiment 1. Density is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals forthat taxa per core (68 cm 2 ). N=6 for all treatments.Treatment Functi<strong>on</strong>al Group DensityDefaunated c<strong>on</strong>trol - -Heteromastus filiformis Subsurface deposit feeder 30Ilyanassa obsolete Surface grazer 2Macoma petalum Surface deposit feeder 3a perforated stainless steel sampling probe (Berg andMcGla<str<strong>on</strong>g>the</str<strong>on</strong>g>ry 2001) at <str<strong>on</strong>g>the</str<strong>on</strong>g> terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment (14days). Porewater samples were analyzed for amm<strong>on</strong>iumusing <str<strong>on</strong>g>the</str<strong>on</strong>g> indophenol blue method (Solorzano 1969) and forsulfide using a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> method described byCline (1969). For statistical analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> porewaterparameters, we calculated a mean value for all three depthsfor each replicate and analyzed differences am<strong>on</strong>gtreatments separately for amm<strong>on</strong>ium and sulfide usingANOVA.In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d experiment, we used <str<strong>on</strong>g>the</str<strong>on</strong>g> same invertebratetreatments and defaunated c<strong>on</strong>trol as in <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment,but added <strong>on</strong>e S. alterniflora seedling to each microcosm.We used nine replicates for defaunated c<strong>on</strong>trols and each <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> three macroinvertebrate treatments. The seedlings usedin this experiment were germinated in <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse usingseeds from inflorescences collected in Willapa Bay,Washingt<strong>on</strong>. Thirty days after germinati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> seedlingswere transferred to envir<strong>on</strong>mental chambers and acclimatedto experimental temperature and light regimes while salinity<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water in sediments was gradually increased from 0 to35 ppt over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 days. Seedlings were transplantedto microcosms after this acclimati<strong>on</strong> period. After 14 days,we measured change in total leaf length (sum <str<strong>on</strong>g>of</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g>individual leaves) and seedling biomass (aboveground andbelowground). We analyzed differences am<strong>on</strong>g treatmentsusing ANOVA.RESULTSFor <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment, preliminary analysis suggestedthat <str<strong>on</strong>g>the</str<strong>on</strong>g> affects <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic invertebrates <strong>on</strong> porewateramm<strong>on</strong>ium and sulfide c<strong>on</strong>centrati<strong>on</strong>s differed am<strong>on</strong>gfuncti<strong>on</strong>al groups. Sulfide c<strong>on</strong>centrati<strong>on</strong>s were highest inmicrocosms c<strong>on</strong>taining H. filiformis but differences betweentreatments were not significant (p = 0.381; Fig. 1A). Theamm<strong>on</strong>ium c<strong>on</strong>centrati<strong>on</strong> was highest in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol andlowest in microcosms c<strong>on</strong>taining M. petalum, but again <str<strong>on</strong>g>the</str<strong>on</strong>g>differences were not significant (p = 0.285; Fig. 1B). Thesurface grazer I. obsoleta had no obvious effects <strong>on</strong>amm<strong>on</strong>ium or sulfide.Overall, in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d experiment, seedlingestablishment was relatively poor, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re was visibleyellowing and dehydrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves in all treatments,particularly microcosms c<strong>on</strong>taining H. filiformis. However,our preliminary analysis indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> surface depositfeeder treatment (M. petalum) had a positive effect <strong>on</strong>seedling establishment (Fig. 2A, 2B and 2C). In c<strong>on</strong>trast toc<strong>on</strong>trols that had no significant growth, <str<strong>on</strong>g>the</str<strong>on</strong>g> total leaf lengthincreased approximately seven cm in microcosms c<strong>on</strong>tainingM. petalum. Post-hoc Tukey tests indicated significantdifferences between M. petalum and H. filiformis (p =0.048). Aboveground and belowground biomass were alsohigher in microcosms c<strong>on</strong>taining M. petalum than in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r- 166 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!