12.07.2015 Views

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> internal to atmospheric CO 2 c<strong>on</strong>centrati<strong>on</strong> (c i /c a ).A CO 2 analyzer (Li-Cor 6251; Lincoln, Nebraska) was used tomeasure leaf photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic carb<strong>on</strong> uptake. Simultaneousmeasures <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll fluorescence (Walz PAM 101;Effeltrich, Germany) allowed calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grossphotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rates <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong>. Light-resp<strong>on</strong>se curveswere generated for PPFD <str<strong>on</strong>g>of</str<strong>on</strong>g> 0-1100 μmol m -2 s -1 . A 20-minutedark period was allowed before measuring F V /F M at 0 μmolm -2 s -1 . The initial slope <str<strong>on</strong>g>of</str<strong>on</strong>g> each plant’s light-resp<strong>on</strong>se curve(under limiting light) was taken to be <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum efficiency<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong> or O 2 evoluti<strong>on</strong> (Genty et al. 1989).Light-resp<strong>on</strong>se curves were compared between speciesand treatments using repeated measures analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>covariance (ANCOVAR). Parameters like quantumefficiency, c i /c a , F V /F M , and NPQ were compared betweenspecies and treatments using analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (ANOVA).Treatments were blocked by tubs in all analyses.RESULTS AND DISCUSSIONMaximum rates <str<strong>on</strong>g>of</str<strong>on</strong>g> gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis (rates <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2evoluti<strong>on</strong>) were quite high in this study (Fig. 1), c<strong>on</strong>sistentwith productivity data presented by L<strong>on</strong>g and Woolhouse(1979) for Spartina species. There were no significantdifferences in gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates between species,treatment, or <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interacti<strong>on</strong>s (ANCOVAR, p≥0.439).Maximum quantum efficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong>,measured under limiting light, were not significantlydecreased by salinity in any species (ANOVA, p≥0.107;Table 1). Values for gross quantum efficiencies in Spartinaand Distichlis were slightly higher than previously publishednet quantum efficiency measures for C 4 m<strong>on</strong>ocots.Values for quantum efficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong> wereslightly lower than gross quantum efficiencies (Table 1) andwere similar to those reported by Ehleringer and Pearcy(1983) for C 4 m<strong>on</strong>ocots. Quantum efficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2fixati<strong>on</strong> decreased in S. alterniflora and S. patens withincreased salinity (ANOVA, p≤0.058), but not in any o<str<strong>on</strong>g>the</str<strong>on</strong>g>rFig. 1. Light-resp<strong>on</strong>se curves showing gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates (μmolO 2 evolved m -2 s -1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina and Distichlis plants in flooded or drainedsoil c<strong>on</strong>diti<strong>on</strong>s and salt up to 30‰. Points are means <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-23 plants ± SD.species (ANOVA, p≥0.161).There were large differences between gross and netphotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates in most species (Table 2). This resulted ina surplus <str<strong>on</strong>g>of</str<strong>on</strong>g> harvested light energy not used in CO 2 fixati<strong>on</strong>.This energy must be dissipated in order to prevent damage tophotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic reacti<strong>on</strong> centers. Net rates <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>siswere lower in 30‰ salt compared to 0‰ salt in S. patens, S.alterniflora, and D. spicata (ANOVA, p≤0.063), but not in S.anglica or S. densiflora (ANOVA, p≥0.624).Maintaining gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates (as measured byfluorescence yield) in <str<strong>on</strong>g>the</str<strong>on</strong>g> light while rates <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong>decrease with increasing salinity indicates additi<strong>on</strong>alTable 1. Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis data collected for high- and low-salinity, flooded-treatment plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> gas-exchange system. Shown is <str<strong>on</strong>g>the</str<strong>on</strong>g> net quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2fixati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> gross quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>photochemical quenching and c i/c a values at 1100 μmol m -2 s -1 , and <str<strong>on</strong>g>the</str<strong>on</strong>g> maximumF V/F M ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> dark-adapted plants. The mean ± SD (n) is given for each species/treatment combinati<strong>on</strong>.Species TreatmentsalinityNet QE(CO 2 phot<strong>on</strong> -1 )Gross QE(O 2 phot<strong>on</strong> -1 )Max NPQ(unitless)c i/c a(unitless)Max F V/F M(unitless)S. alterniflora 0‰ 0.065 ± 0.020 (3) 0.066 ± 0.010 (3) 1.99 ± 0.24 (3) 0.53 ± 0.10 (3) 0.74 ± 0.01 (3)30‰ 0.026 ± 0.016 (3) 0.046 ± 0.010 (3) 1.80 ± 0.36 (3) 0.60 ± 0.15 (3) 0.67 ± 0.08 (3)S. anglica 0‰ 0.025 ± 0.018 (4) 0.049 ± 0.009 (4) 1.64 ± 0.33 (4) 0.61 ± 0.11 (4) 0.72 ± 0.04 (4)30‰ 0.027 ± 0.021 (4) 0.056 ± 0.009 (4) 1.63 ± 0.50 (4) 0.41 ± 0.08 (4) 0.72 ± 0.03 (4)S. densiflora 0‰ 0.049 ± 0.048 (4) 0.056 ± 0.014 (4) 1.78 ± 0.24 (4) 0.57 ± 0.17 (4) 0.74 ± 0.01 (4)30‰ 0.034 ± 0.025 (4) 0.063 ± 0.006 (4) 1.44 ± 0.12 (4) 0.35 ± 0.14 (4) 0.73 ± 0.01 (4)S. patens 0‰ 0.067 ± 0.018 (3) 0.068 ± 0.003 (3) 1.19 ± 0.08 (3) 0.56 ± 0.14 (3) 0.71 ± 0.01 (3)30‰ 0.033 ± 0.022 (3) 0.057 ± 0.007 (3) 1.70 ± 1.16 (3) 0.53 ± 0.19 (3) 0.72 ± 0.01 (3)D. spicata 0‰ 0.038 ± 0.002 (3) 0.050 ± 0.014 (3) 0.79 ± 0.23 (3) 0.53 ± 0.04 (3) 0.60 ± 0.10 (3)30‰ 0.023 ± 0.015 (4) 0.057 ± 0.006 (4) 1.39 ± 0.37 (4) 0.53 ± 0.19 (3) 0.69 ± 0.04 (4)-56-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!