01.12.2012 Views

Applied numerical modeling of saturated / unsaturated flow and ...

Applied numerical modeling of saturated / unsaturated flow and ...

Applied numerical modeling of saturated / unsaturated flow and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

W01420 BAUER ET AL.: ASSESSING FIRST-ORDER RATES<br />

magnitude from 0.07 a 1 to 1.2 a 1 <strong>and</strong> for TCE ranging<br />

from 0.05 a 1 to 4.75 a 1 . For benzene, toluene <strong>and</strong> xylene<br />

rate constants <strong>of</strong> 0.07–3.0 a 1 , 0.36–21.0 a 1 <strong>and</strong> 0.32–<br />

76.0 a 1 , respectively, are reported [Wiedemeier et al.,<br />

1999]. Method performance increases with increasing<br />

source width for all methods. For sources very wide with<br />

respect to the integral scale <strong>of</strong> the hydraulic conductivity<br />

field, all methods yield reasonable results. In reality, however,<br />

when sources are heterogeneous or formed by a<br />

complex combination <strong>of</strong> a number <strong>of</strong> zones, the total source<br />

width may be difficult to estimate. If degradation rates are<br />

used for assessing the NA potential at a contaminated site,<br />

overestimation <strong>of</strong> the degradation rates is a critical point.<br />

Overestimation <strong>of</strong> the degradation rate constant leads to an<br />

overestimation <strong>of</strong> the overall natural attenuation potential. If<br />

plume lengths are calculated with too high degradation rate<br />

constants, then estimated plume lengths are too short.<br />

Remediation times as well as downgradient concentrations<br />

may be underestimated. The results presented show that<br />

determination <strong>of</strong> degradation rate constants suffers from two<br />

main sources <strong>of</strong> error, i.e., sampling <strong>of</strong>f the plume center<br />

line <strong>and</strong> an incorrect estimate <strong>of</strong> the average transport<br />

velocity. The first can be overcome by using method 2,<br />

the second can be resolved by conducting tracer tests or<br />

additional measurements <strong>of</strong> the hydraulic conductivity. A<br />

tracer test would furthermore prove, that the observation<br />

wells under consideration are sampling the same <strong>flow</strong> path.<br />

Further work on this subject will include the effects <strong>of</strong><br />

measurement error on the estimated degradation rates, both<br />

in measuring hydraulic head <strong>and</strong> contaminant concentration.<br />

Also effects <strong>of</strong> different formulations <strong>of</strong> the kinetic reactions<br />

used to simulate the plume will be investigated.<br />

[40] Acknowledgments. This work is funded by the German Ministry<br />

<strong>of</strong> Education <strong>and</strong> Research as part <strong>of</strong> the KORA priority program,<br />

subproject 7.1 Virtual Aquifer. We would like to acknowledge the thoughtful<br />

reviews <strong>of</strong> three anonymous reviewers. Their comments have greatly<br />

improved this manuscript.<br />

References<br />

Ababou, R., D. McLaughlin, A. L. Gutjahr, <strong>and</strong> A. F. B. Tompson (1989),<br />

Numerical simulation <strong>of</strong> three-dimensional <strong>saturated</strong> <strong>flow</strong> in r<strong>and</strong>omly<br />

heterogeneous porous media, Transp. Porous Media, 4, 549–565.<br />

Aronson, D., <strong>and</strong> P. H. Howard (1997), Anaerobic biodegradation <strong>of</strong> organic<br />

chemicals in groundwater: A summary <strong>of</strong> field <strong>and</strong> laboratory<br />

studies, SRC TR-97-0223F, Sci. Cent. Rep., Syracuse Res. Corp., New<br />

York.<br />

Bauer, S., <strong>and</strong> O. Kolditz (2006), Assessing contaminant mass <strong>flow</strong> rates<br />

obtained by the integral groundwater investigation method by using the<br />

virtual aquifer approach, IAHS Publ., in press.<br />

Bauer, S., C. Beyer, <strong>and</strong> O. Kolditz (2005), Assessing measurements <strong>of</strong> first<br />

order degradation rates by using the Virtual Aquifer approach, IAHS<br />

Publ., 297, 274–281.<br />

Bear, J. (1972), Dynamics <strong>of</strong> fluids in Porous Media, Elsevier, New York.<br />

Beinhorn, M., O. Kolditz, <strong>and</strong> P. Dietrich (2005), 3-D <strong>numerical</strong> evaluation<br />

<strong>of</strong> density effects on tracer tests, J. Contam. Hydrol., 81, 89–105,<br />

doi:10.1016/j.jconhyd.2005.08.001.<br />

Bockelmann, A., D. Zamfirescu, T. Ptak, P. Grathwohl, <strong>and</strong> G. Teutsch<br />

(2003), Quantification <strong>of</strong> mass fluxes <strong>and</strong> natural attenuation rates<br />

at an industrial site with a limited monitoring network: A case study,<br />

J. Contam. Hydrol., 60, 97–121, doi:10.1016/S0169-7722(02)00060-8.<br />

Buscheck, T. E., <strong>and</strong> C. M. Alcantar (1995), Regression techniques <strong>and</strong><br />

analytical solutions to demonstrate intrinsic bioremediation, in Intrinsic<br />

Bioremediation, edited by R. E. Hinchee, T. J. Wilson, <strong>and</strong> D. Downey,<br />

pp. 109–116, Battelle Press, Columbus, Ohio.<br />

Chapelle, F. H., P. M. Bradley, D. R. Lovley, <strong>and</strong> D. A. Vroblesky (1996),<br />

Measuring rates <strong>of</strong> biodegradation in a contaminated aquifer using field<br />

<strong>and</strong> laboratory methods, Ground Water, 34(4), 691–698.<br />

13 <strong>of</strong> 14<br />

W01420<br />

Dagan, G. (1989), Flow <strong>and</strong> Transport in Porous Formations, Springer,<br />

New York.<br />

Diersch, H.-J., <strong>and</strong> O. Kolditz (1998), Coupled groundwater <strong>flow</strong> <strong>and</strong><br />

transport: 2. Thermohaline <strong>and</strong> 3-D convection processes, Adv. Water<br />

Resour., 21(5), 401–425.<br />

Diersch, H.-J., <strong>and</strong> O. Kolditz (2002), Variable-density <strong>flow</strong> <strong>and</strong> transport<br />

in porous media: Approaches <strong>and</strong> challenges, Adv. Water Resour., 25(8–<br />

12), 899–944.<br />

Domenico, P. A. (1987), An analytical model for multidimensional transport<br />

<strong>of</strong> a decaying contaminant species, J. Hydrol., 91, 49–59.<br />

Dykaar, B. B., <strong>and</strong> P. K. Kitanidis (1992), Determination <strong>of</strong> the effective<br />

hydraulic conductivity for heterogeneous porous media using a <strong>numerical</strong><br />

spectral approach: 2. Results, Water Resour. Res., 28(4), 1167–<br />

1178.<br />

Goovaerts, P. (1999), Impact <strong>of</strong> the simulation algorithm, magnitude <strong>of</strong><br />

ergodic fluctuations <strong>and</strong> number <strong>of</strong> realizations on the spaces <strong>of</strong> uncertainty<br />

<strong>of</strong> <strong>flow</strong> properties, Stochastic Environ. Res. Risk Assess., 13(3),<br />

161–182, doi:10.1007/s004770050037.<br />

Herfort, M. (2000), Reactive transport <strong>of</strong> organic compounds within a<br />

heterogeneous porous aquifer, Tübinger Geowiss. Arbeiten, Univ. <strong>of</strong><br />

Tübingen, Tübingen.<br />

Huyakorn, P. S., <strong>and</strong> G. F. Pinder (1983), Computational Methods in Subsurface<br />

Flow, Academic, San Diego, Calif.<br />

Kolditz, O. (2002), Computational Methods in Environmental Fluid Dynamics,<br />

Springer, New York.<br />

Kolditz, O., <strong>and</strong> S. Bauer (2004), A process-oriented approach to computing<br />

multi-field problems in porous media, J. Hydroinf., 6(3), 225–<br />

244.<br />

Kolditz, O., R. Ratke, H.-J. Diersch, <strong>and</strong> W. Zielke (1998), Coupled<br />

groundwater <strong>flow</strong> <strong>and</strong> transport: 1. Verification <strong>of</strong> variable density <strong>flow</strong><br />

<strong>and</strong> transport models, Adv. Water Resour., 21(1), 27–46.<br />

Kolditz, O., et al. (2004), GeoSys—Theory <strong>and</strong> users Manual, Release 4.1.<br />

GeoSystems Res., Cent. for Appl. Geosci., Univ. <strong>of</strong> Tübingen, Tübingen.<br />

(Available at http://www.uni-tuebingen.de/zag/geohydrology.)<br />

McNab, W. W., <strong>and</strong> B. P. Dooher (1998), A critique <strong>of</strong> a steady-state<br />

analytical method for estimating contaminant degradation rates, Ground<br />

Water, 36(6), 983–987.<br />

Newell, C. J., H. S. Rifai, J. T. Wilson, J. A. Connor, J. A. Aziz, <strong>and</strong> M. P.<br />

Suarez (2002), Calculation <strong>and</strong> use <strong>of</strong> first-order rate constants for monitored<br />

natural attenuation studies, U.S. EPA Ground Water Issue, EPA/<br />

540/S-02/500, U.S. Environ. Protect. Ag., Washington, D. C.<br />

Pebesma, E. J., <strong>and</strong> C. G. Wesseling (1998), Gstat: A program for geostatistical<br />

<strong>modeling</strong>, prediction <strong>and</strong> simulation, Comput. Geosci., 24(1),<br />

17–31, doi:10.1016/S0098-3004(97)00082-4.<br />

Rehfeldt, K. R., J. M. Boggs, <strong>and</strong> L. W. Gelhar (1992), Field study <strong>of</strong><br />

dispersion in a heterogeneous aquifer: 3. Geostatistical analysis <strong>of</strong> hydraulic<br />

conductivity, Water Resour. Res., 28(12), 3309–3324.<br />

Renard, P., <strong>and</strong> G. de Marsily (1997), Calculating equivalent permeability:<br />

A review, Adv. Water Resour., 20(5–6), 253–278.<br />

Rubin, Y. (2003), <strong>Applied</strong> Stochastic Hydrogeology, Oxford Univ. Press,<br />

New York.<br />

Schäfer, D., A. Dahmke, O. Kolditz, <strong>and</strong> G. Teutsch (2002), ‘‘Virtual<br />

Aquifers’’: A concept for evaluation <strong>of</strong> exploration, remediation <strong>and</strong><br />

monitoring strategies, IAHS Publ., 277, 52–59.<br />

Schäfer, D., B. Schlenz, <strong>and</strong> A. Dahmke (2004), Evaluation <strong>of</strong> exploration<br />

<strong>and</strong> monitoring methods for verification <strong>of</strong> natural attenuation using the<br />

virtual aquifer approach, Biodegradation J., 15(6), 453–465,<br />

doi:10.1023/b:biod.0000044600.81216.00.<br />

Stenback, G. A., S. K. Ong, S. W. Rogers, <strong>and</strong> B. H. Kjartonson (2004),<br />

Impact <strong>of</strong> transverse <strong>and</strong> longitudinal dispersion on first-order degradation<br />

rate constant estimation, J. Contam. Hydrol., 73, 3 – 14, doi:10.1016/<br />

j.jconhyd.2003.11.004.<br />

Suarez, M. P., <strong>and</strong> H. S. Rifai (2002), Evaluation <strong>of</strong> BTEX remediation by<br />

natural attenuation at a coastal facility, Ground Water Monit. Remed.,<br />

22(1), 62–77.<br />

Sudicky, E. A. (1986), A natural gradient experiment on solute transport<br />

in a s<strong>and</strong> aquifer: Spatial variability <strong>of</strong> hydraulic conductivity <strong>and</strong> its<br />

role in the dispersion process, Water Resour. Res., 22(13), 2069 –<br />

2082.<br />

Thorenz, C., G. Kosakowski, O. Kolditz, <strong>and</strong> B. Berkowitz (2002), An<br />

experimental <strong>and</strong> <strong>numerical</strong> investigation <strong>of</strong> saltwater movement in<br />

coupled <strong>saturated</strong>-partially <strong>saturated</strong> systems, Water Resour. Res.,<br />

38(6), 1069, doi:10.1029/2001WR000364.<br />

U.S. Environmental Protection Agency (EPA) (1998), Technical protocol<br />

for evaluating natural attenuation <strong>of</strong> chlorinated solvents in groundwater,<br />

Rep. EPA/600/R/128, Washington, D. C.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!