14.02.2013 Views

Thesis - Leigh Moody.pdf - Bad Request - Cranfield University

Thesis - Leigh Moody.pdf - Bad Request - Cranfield University

Thesis - Leigh Moody.pdf - Bad Request - Cranfield University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 6 / Missile Guidance<br />

_ _<br />

accuracy required since weave motion usually contains a spectrum of<br />

frequencies in the target observer space.<br />

6.6.6 CLOS Demand Correction for Constant Velocity Targets<br />

The feed-forward demands are based on polar dynamics that are ideal for<br />

slowly turning targets, but not for straight flying targets. An interesting<br />

piece of research by Lee [L.4] shows that improvement in CLOS performance<br />

is possible if the differential angles are corrected when the target is flying at<br />

a constant velocity. A 3D extension to Lee’s 2D algorithm follows,<br />

ϕ<br />

ϕ<br />

Θ<br />

Ψ<br />

Ψ<br />

Ψ<br />

TV<br />

A<br />

TV<br />

A<br />

><br />

≤<br />

ϕ<br />

ZT<br />

FF<br />

ϕ<br />

: =<br />

T<br />

FF<br />

FF<br />

6-28<br />

( ) T<br />

YT ZT<br />

ϕ ,<br />

: = η ⋅ ϕ<br />

sin<br />

FF<br />

FF<br />

TV<br />

sin ( ΨA<br />

− ϕΨ<br />

)<br />

TV T<br />

T<br />

( Ψ − Ψ ) ⋅ cos(<br />

ϕ − Ψ )<br />

A<br />

A<br />

Ψ<br />

A<br />

Equation 6.6-14<br />

Equation 6.6-15<br />

TV<br />

sin ( ΘA<br />

+ ϕΘ<br />

)<br />

TV T<br />

T<br />

( Θ + Θ ) ⋅ cos(<br />

ϕ + )<br />

π<br />

YT<br />

⇒ ϕFF<br />

: =<br />

2 sin<br />

Θ<br />

A<br />

A<br />

Ψ<br />

A<br />

Equation 6.6-16<br />

TV<br />

sin ( − ΘA<br />

+ ϕΘ<br />

)<br />

TV T<br />

T<br />

( −Θ<br />

+ Θ ) ⋅ cos ( ϕ + )<br />

π<br />

YT<br />

⇒ ϕFF<br />

: =<br />

2 sin<br />

Θ<br />

A<br />

A<br />

Ψ<br />

A<br />

Equation 6.6-17<br />

( ) ( )<br />

( ) ( ) ⎟⎟<br />

T<br />

t − ∆t<br />

⋅ sin Ψ − ∆ ⎞<br />

A t t<br />

t − ∆t<br />

⋅cos<br />

Ψ t − ∆t<br />

⎛ XT T XT<br />

−1<br />

2 ⋅ P ⋅ Ψ −<br />

= ⎜ t sin A Pt<br />

: tan<br />

⎜ XT T XT<br />

T<br />

⎝ 2 ⋅ Pt<br />

⋅ cos ΨA<br />

− Pt<br />

A<br />

⎠<br />

Equation 6.6-18<br />

( ) ( )<br />

( ) ( ) ⎟⎟<br />

T<br />

t − ∆t<br />

⋅ sin Θ − ∆ ⎞<br />

A t t<br />

t − ∆t<br />

⋅ cosΘ<br />

t − ∆t<br />

⎛ XT T XT<br />

−1<br />

2 ⋅ P ⋅ Θ −<br />

= − ⎜ t sin A Pt<br />

: tan<br />

⎜ XT T XT<br />

T<br />

⎝ 2 ⋅ Pt<br />

⋅ cosΘ<br />

A − Pt<br />

A<br />

⎠<br />

Equation 6.6-19<br />

Implementation requires manoeuvre detection so that the algorithm can be<br />

phased-out for manoeuvring targets. This can be formulated directly from<br />

missile state observer data, or from the up-linked IMM filter probabilities.<br />

To avoid transients in the missile acceleration this algorithm is weighted by<br />

the probability associated with the IMM constant velocity filter,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!