19.07.2013 Views

advanced building skins 14 | 15 June 2012 - lamp.tugraz.at - Graz ...

advanced building skins 14 | 15 June 2012 - lamp.tugraz.at - Graz ...

advanced building skins 14 | 15 June 2012 - lamp.tugraz.at - Graz ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tdd [-]<br />

Advanced Building Skins<br />

The energy consumption of <strong>building</strong>s is typically in the form of he<strong>at</strong> or electricity. Thermal energy is<br />

required to either he<strong>at</strong> or cool the <strong>building</strong> to a desired oper<strong>at</strong>ion temper<strong>at</strong>ure. Thus the energy<br />

required is rel<strong>at</strong>ed primarily to the type of <strong>building</strong> usage and the thermal losses or gains through the<br />

<strong>building</strong> envelope. This correl<strong>at</strong>ion is mainly described by the U value and g value of the product or<br />

the combin<strong>at</strong>ion of products.<br />

Irradi<strong>at</strong>ion<br />

Reflection<br />

Absorption<br />

Transmission<br />

Secondary he<strong>at</strong><br />

transfer<br />

Solar he<strong>at</strong> gain<br />

G - value [%]<br />

- 2 -<br />

100 %<br />

90 %<br />

80 %<br />

70 %<br />

60 %<br />

50 %<br />

40 %<br />

30 %<br />

20 %<br />

10 %<br />

0 %<br />

Christof Erban, Schüco Intern<strong>at</strong>ional KG<br />

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %<br />

Cell coverage [%]<br />

Figure 1: (a) Interaction of solar radi<strong>at</strong>ion and PV modules. (b) Total solar energy transmittance (g value) of<br />

semi-transparent PV elements vs. cell coverage for monolithic panels and insul<strong>at</strong>ing glazing<br />

Unfortun<strong>at</strong>ely, constant boundary conditions are assumed when the U or g value is determined<br />

experimentally or calcul<strong>at</strong>ed as described in the relevant standards. Especially the g value – describing<br />

the total solar gain through a component – is strongly affected by the reflectance, absorbance and<br />

transmittance of the component. As can be seen in Figures 2 and 3, these characteristics are for glass<br />

not constant for varying incident angles.<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

6 mm Flo<strong>at</strong> fg023066<br />

T 0° p-pol. (=s-pol.) calc.<br />

T 20° p-pol. calc.<br />

T 30° p-pol. calc.<br />

T 45° p-pol. calc.<br />

T 60° p-pol. calc.<br />

T 75° p-pol. calc.<br />

T p-pol. mess: 0°, 30°, 45°, 60°, 75°<br />

0.0<br />

300 400 500 600 700 800<br />

Wellenlänge [nm]<br />

0.0<br />

300 400 500 600 700 800<br />

Figure 2: Transmittance spectra of 6 mm flo<strong>at</strong> glass for p and s-polarized light and<br />

different angles of incidence [1]<br />

Tdd [-]<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

T 0° s-pol. (=p-pol.) calc.<br />

T 20° s-pol. calc.<br />

T 30° s-pol. calc.<br />

T 45° s-pol. calc.<br />

T 60° s-pol. calc.<br />

T 75° s-pol. calc.<br />

T s-pol. mess: 0°, 30°, 45°, 60°, 75°<br />

Wellenlänge [nm]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!