19.07.2013 Views

advanced building skins 14 | 15 June 2012 - lamp.tugraz.at - Graz ...

advanced building skins 14 | 15 June 2012 - lamp.tugraz.at - Graz ...

advanced building skins 14 | 15 June 2012 - lamp.tugraz.at - Graz ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rdd [-]<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.<strong>15</strong><br />

0.10<br />

0.05<br />

6 mm Flo<strong>at</strong> fg023066<br />

R 0° p-pol. (=s-pol.) calc.<br />

R 20° p-pol. calc.<br />

R 30° p-pol. calc.<br />

R 45° p-pol. calc.<br />

R 60° p-pol. calc.<br />

R 75° p-pol. calc.<br />

R p-pol. mess: 20°, 30°, 45°, 60°, 75°<br />

0.00<br />

300 400 500 600 700 800<br />

Wellenlänge [nm]<br />

Advanced Building Skins<br />

Figure 3: Reflectance spectra of 6 mm flo<strong>at</strong> glass for p and s-polarized light and<br />

different angle of incidence [1]<br />

As both the reflectance and transmittance values depend significantly on the glazing configur<strong>at</strong>ion,<br />

including the number of panes, glass chemical composition, co<strong>at</strong>ings, and surface structures, different<br />

glazing specimens not only have different U values and g values for normal incidence, but also show<br />

differently varying behavior when the incident angle is changed. Figure 4 shows th<strong>at</strong> co<strong>at</strong>ed glass, in<br />

particular, shows large devi<strong>at</strong>ions from the g value determined <strong>at</strong> an incidence angle of 0°.<br />

Figure 4: Calcul<strong>at</strong>ed angular functions of total solar transmittance g for three DGU [2]<br />

Inadequ<strong>at</strong>e consider<strong>at</strong>ion of the incident angle dependence would not be of interest for calcul<strong>at</strong>ing the<br />

thermal impact on <strong>building</strong>s if the total irradi<strong>at</strong>ion <strong>at</strong> non-zero angles did not contribute significantly,<br />

since the solar gain is the product of the g value and the incident solar energy. However, as figure 5<br />

shows, the opposite is the case. The incidence angle of 0°, for which the solar he<strong>at</strong> gain coefficient is<br />

determined conventionally, contributes insignificantly to the annual total, whereas significant thermal<br />

impact results for solar irradi<strong>at</strong>ion <strong>at</strong> incidence angles devi<strong>at</strong>ing from 0°.<br />

Note: Vari<strong>at</strong>ions in orient<strong>at</strong>ion have a less significant effect on the angular distribution than vari<strong>at</strong>ions<br />

of the tilt angle for constant orient<strong>at</strong>ion.<br />

- 3 -<br />

Rdd [-]<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

6 mm Flo<strong>at</strong><br />

fg023066<br />

R 0° s-pol. (= p-pol.) calc.<br />

R 20° s-pol. calc.<br />

R 30° s-pol. calc.<br />

R 45° s-pol. calc.<br />

R 60° s-pol. calc.<br />

R 75° s-pol. calc.<br />

R s-pol. mess: 20°, 30°, 45°, 60°, 75°<br />

0.0<br />

300 400 500 600 700 800<br />

Wellenlänge [nm]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!