01.06.2015 Views

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

130 <strong>Actuarial</strong> <strong>Modelling</strong> <strong>of</strong> <strong>Claim</strong> <strong>Counts</strong><br />

to the posterior distribution <strong>of</strong> i . Past claims history N i1 = k 1 N iTi = k Ti<br />

modifies the<br />

distribution <strong>of</strong> i , and this modified distribution is used as a new mixing law for the number<br />

<strong>of</strong> claims N iTi +1 for year T i + 1.<br />

3.3.3 Bayesian <strong>Credibility</strong> Premium<br />

We are looking for the function ⋆ <strong>of</strong> N i1 N iTi that is the closest to i , i.e. minimizing<br />

[ (i<br />

E − N i1 N iTi ) ] 2<br />

over all the measurable functions T i<br />

→ . Proposition 3.1 gives the solution <strong>of</strong> this<br />

optimization problem:<br />

⋆ N i1 N iTi = E [ i<br />

∣ ∣ N i1 N iTi<br />

]<br />

<br />

In general, the posterior mean <strong>of</strong> i given N i1 = k 1 N iTi = k Ti<br />

is given by<br />

E [ i<br />

∣ ∣ N i1 = k 1 N iTi = k Ti<br />

]<br />

=<br />

∫ +<br />

=<br />

(<br />

∏Ti<br />

<br />

0<br />

∫ +<br />

0<br />

)<br />

t=1 PrN it = k t i = dF <br />

(<br />

∏Ti<br />

)<br />

t=1 PrN it = k t i = dF <br />

∫ +<br />

0<br />

exp− i• k •+1 dF <br />

∫ +<br />

0<br />

exp− i• k • dF (3.2)<br />

This a posteriori expectation thus appears as the ratio <strong>of</strong> two Mellin transforms Mk =<br />

Eexp− i i k <strong>of</strong> i. It is interesting to note that the a posteriori expectation depends<br />

only on the total number k • <strong>of</strong> accidents caused in the past T i years <strong>of</strong> insurance, and not on<br />

the history <strong>of</strong> these claims. This was expected from Property 3.1. This is a characteristic <strong>of</strong><br />

the credibility models with static random effects.<br />

The Bayesian credibility premium is simply the mean <strong>of</strong> the predictive distribution. It is<br />

given by<br />

E [ ∣<br />

] ∫ <br />

N iTi +1<br />

∣N i1 = k 1 N iTi = k Ti = iTi +1dF k • <br />

0<br />

= iTi +1E [ ∣ ]<br />

i N i1 = k 1 N iTi = k Ti<br />

where the posterior expectation <strong>of</strong> i is given by (3.2). The posterior expected claim number<br />

EN iTi +1N i1 N iTi is obtained by multiplying iTi +1 by the correction coefficient<br />

E i N i1 N iTi . This approach always yields financial balance, since<br />

[<br />

E E [ ∣ ] ]<br />

i N i1 = k 1 N iTi = k Ti<br />

= E i = 1<br />

so that the corrections average to unity.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!