01.06.2015 Views

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Multi-Event Systems 263<br />

6.2.5 Variance-Covariance Structure <strong>of</strong> the Random Effects<br />

For deriving linear credibility formulas, we only need the moment structure <strong>of</strong> the risk<br />

variables. Let us introduce the variance-covariance matrix <strong>of</strong> i<br />

bod i<br />

mat that is denoted as<br />

( )<br />

<br />

2<br />

= bod<br />

bm<br />

bm mat<br />

2 <br />

In words, 2 bod and 2 mat<br />

are the variances <strong>of</strong> bod<br />

i<br />

covariance between bod<br />

i<br />

and mat<br />

i<br />

and i<br />

mat<br />

. Note that the following inequalities<br />

, respectively, and bm is the<br />

2 bod ≥ 0 2 mat ≥ 0 and bm≤ bod mat<br />

must be fulfilled to ensure that is positive definite. The estimated variances and covariance<br />

have to fulfill the same constraints. If not, this rules out the linear credibility model.<br />

6.2.6 Variance-Covariance Structure <strong>of</strong> the Annual <strong>Claim</strong> Numbers<br />

Let us now compute the variance and covariance <strong>of</strong> Ni• mat and Ni• bod.<br />

Since<br />

Ni•<br />

mat ∼ oi mat<br />

i•<br />

mat i<br />

, we have<br />

Similarly, from N bod<br />

i•<br />

VN mat<br />

i•<br />

∼ oi bod<br />

i•<br />

bod i<br />

VN bod<br />

i•<br />

= mat<br />

i•<br />

we get<br />

= bod<br />

i•<br />

+ ( ) 2<br />

mat 2<br />

i• mat <br />

+<br />

( ) 2<br />

bod 2<br />

i• bod <br />

To have an idea about the dependence existing between the numbers <strong>of</strong> claims with material<br />

damage only and with bodily injuries, let us now compute the covariance between Ni•<br />

mat<br />

and Ni• bod:<br />

[<br />

]<br />

CN mat<br />

i•<br />

Nbod i• = E N mat<br />

i•<br />

− mat bod<br />

i•<br />

Ni•<br />

− bod<br />

i• <br />

[<br />

= E E [ N mat<br />

i•<br />

− mat<br />

i•<br />

[<br />

= E E [ ∣<br />

N mat<br />

i•<br />

− mat<br />

i•<br />

[<br />

= E<br />

= mat<br />

i•<br />

mat<br />

i•<br />

(<br />

<br />

mat<br />

i<br />

bod i•<br />

bm<br />

As expected, the covariance bm between mat<br />

i<br />

bod<br />

Ni•<br />

∣ mat<br />

i<br />

− bod<br />

i•<br />

∣ ∣ mat<br />

] [ ∣<br />

E N<br />

bod<br />

− bod<br />

i•<br />

− 1 ) (<br />

bod<br />

i• <br />

bod<br />

i<br />

− 1 )]<br />

and bod<br />

i<br />

i<br />

i•<br />

bod<br />

i<br />

∣ bod<br />

i<br />

] ]<br />

] ]<br />

drives the covariance <strong>of</strong> Ni•<br />

mat and Ni• bod.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!