01.06.2015 Views

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

262 <strong>Actuarial</strong> <strong>Modelling</strong> <strong>of</strong> <strong>Claim</strong> <strong>Counts</strong><br />

where f · · is the bivariate probability density function <strong>of</strong> the couple <strong>of</strong> random effects<br />

i<br />

mat i<br />

bod . The joint probability density function <strong>of</strong> i<br />

mat , i<br />

bod , Nit<br />

mat , Nit<br />

bod , t = 1T i<br />

is given by<br />

exp− mat<br />

i<br />

mat<br />

i•<br />

− bod i<br />

bod<br />

i•<br />

mat i<br />

kmat i•<br />

∏ Ti<br />

<br />

bod<br />

i<br />

kbod i•<br />

so that the conditional probability density function <strong>of</strong> mat<br />

i<br />

∫ <br />

0<br />

exp− mat<br />

∫ <br />

i<br />

mat<br />

i•<br />

− bod i<br />

bod<br />

i•<br />

mat i<br />

kmat i• <br />

bod<br />

i<br />

exp− 0 1 mat<br />

i•<br />

The posterior distribution <strong>of</strong> i<br />

mat<br />

in Chapter 3.<br />

− 2 bod<br />

i•<br />

i<br />

bod<br />

t=1 mat it<br />

kmat it bod<br />

it<br />

kbod it<br />

∏ Ti<br />

t=1 kmat it !kit bod !<br />

i<br />

bod<br />

f mat<br />

i<br />

bod<br />

i<br />

given past claims history is<br />

kbod i• f i<br />

mat i<br />

bod <br />

(6.1)<br />

1 kmat i• 2 kbod i• f 1 2 d 1 d 2<br />

then allows for a posteriori corrections, as explained<br />

<br />

6.2.4 Summary <strong>of</strong> Past <strong>Claim</strong>s Histories<br />

Denote as<br />

∑<br />

T i<br />

N bod<br />

i•<br />

= N bod<br />

it<br />

t=1<br />

and N mat<br />

∑<br />

T i<br />

i•<br />

= N mat<br />

it<br />

t=1<br />

the total claim numbers <strong>of</strong> each category caused by policyholder i during the observation<br />

period. Since the random effects i<br />

mat and i<br />

bod do not vary with time, Ni•<br />

mat and Ni•<br />

bod are<br />

sufficient summaries <strong>of</strong> past claims histories (in the sense that the posterior distributions <strong>of</strong><br />

i<br />

mat and i<br />

bod as well as the predictive distributions <strong>of</strong> NiT mat<br />

bod<br />

i +1<br />

and NiT i +1<br />

only depend on<br />

Ni•<br />

mat and Ni•<br />

bod ; see (6.1) where past claims histories enter through kmat<br />

i•<br />

and ki• bod).<br />

Clearly,<br />

mat<br />

i•<br />

It is then easy to see that given mat<br />

i<br />

and that given bod<br />

i<br />

= bod<br />

i<br />

= EN mat and bod<br />

i•<br />

= mat<br />

i<br />

N mat<br />

i•<br />

N bod<br />

i•<br />

i•<br />

∼ oi ( mat<br />

i•<br />

∼ oi ( bod<br />

i•<br />

= EN bod<br />

i•<br />

<br />

mat i<br />

bod i<br />

)<br />

)<br />

<br />

invoking the conditional independence <strong>of</strong> the annual claim numbers <strong>of</strong> each category and the<br />

stability <strong>of</strong> the Poisson family under convolution. Therefore, Ni•<br />

mat and Ni•<br />

bod are both mixed<br />

Poisson distributed.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!