01.06.2015 Views

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

142 <strong>Actuarial</strong> <strong>Modelling</strong> <strong>of</strong> <strong>Claim</strong> <strong>Counts</strong><br />

When the risk parameter i is known to be unimodal (with mode m, say) then the<br />

improved extremal distributions <strong>of</strong> Tables 3.8–3.9 can be used in lieu <strong>of</strong> those coming from<br />

Tables 3.5–3.6. This amounts to evaluating the numerator and denominator <strong>of</strong> (3.2), taking<br />

for the structure function F a discrete mixture <strong>of</strong> uniform distributions. This provides an<br />

easy-to-compute approximation for (3.2) based on incomplete Gamma functions, as can be<br />

seen from the following example.<br />

Example 3.1 Assume that i has support + , mode m and moments 1 and 2 . Then, we<br />

can use the approximation Mk ≈ M 3<br />

mink where<br />

M 3<br />

min k = 3 2 + 2 1 m − m 2 − 4 2 1<br />

1<br />

m − 2 1 2 + 3 2 + 2 1 m − m 2 − 4 2 1<br />

m<br />

∫ m<br />

m − 2<br />

+<br />

1 2<br />

1<br />

m − 2 1 2 + 3 2 + 2 1 m − m 2 − 4 2 1<br />

c − c<br />

0<br />

exp− k d<br />

∫ c<br />

c<br />

exp− k d<br />

with c and c defined as<br />

and<br />

(<br />

c = min m 3 )<br />

2 − 2m 1<br />

2 1 − m<br />

(<br />

c = max m 3 )<br />

2 − 2m 1<br />

<br />

2 1 − m<br />

The value <strong>of</strong> M 3<br />

mink is easily obtained from the incomplete Gamma function. Specifically,<br />

M 3<br />

min k = 3 2 + 2 1 m − m 2 − 4 2 1<br />

k!<br />

k + 1 m<br />

m − 2 1 2 + 3 2 + 2 1 m − m 2 − 4 2 1<br />

mk+1 m − 2<br />

+<br />

1 2<br />

k! ( )<br />

k + 1 c− k + 1c <br />

m − 2 1 2 + 3 2 + 2 1 m − m 2 − 4 2 1<br />

c − c k+1<br />

Example 3.2 Now, if the support <strong>of</strong> i is known to be contained in 0b then we can use<br />

the approximation Mk ≈ Mmaxk 3 where<br />

M 3<br />

max k = 3 2 + 2 1 m − m 2 − 4 2 1<br />

1<br />

b + m − 2 1 2 + 3 2 + 2 1 m − m 2 − 4 2 1<br />

b − m<br />

b + m − 2<br />

+<br />

1 2<br />

1<br />

b + m − 2 1 2 + 3 2 + 2 1 m − m 2 − 4 2 1 d − d<br />

∫ b<br />

m<br />

∫ d<br />

d<br />

exp− k d<br />

exp− k d<br />

with d and d defined as<br />

(<br />

d = min m 2b )<br />

1 + 2 1 m − bm − 3 2<br />

b + m − 2 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!