01.06.2015 Views

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

Actuarial Modelling of Claim Counts Risk Classification, Credibility ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Credibility</strong> Models for <strong>Claim</strong> <strong>Counts</strong> 131<br />

3.3.4 Poisson-Gamma <strong>Credibility</strong> Model<br />

Gamma Distribution for the Random Effects<br />

Let us assume that i ∼ ama a with probability density function (1.35). The joint<br />

probability mass function <strong>of</strong> the random vector N i = N i1 N i2 N iTi is given by (2.19).<br />

The joint probability density <strong>of</strong> the random vector i N i1 N i2 N iTi is given by<br />

T<br />

∏ i<br />

t=1<br />

( ) ( ) kit<br />

i it<br />

exp − i it<br />

k it !<br />

(<br />

T<br />

∑ i<br />

∝ exp − i<br />

t=1<br />

1<br />

a aa a−1<br />

i<br />

exp−a i <br />

)<br />

∑ Ti<br />

t=1<br />

it <br />

k it+a−1<br />

i exp−a i (3.3)<br />

A Posteriori Distribution <strong>of</strong> Random Effects<br />

In Section 2.5.1, we established that in a two-period model, the a posteriori distribution <strong>of</strong><br />

i remained Gamma, with updated parameters. Let us now extend the result to a multiperiod<br />

setting.<br />

Now, the conditional distribution <strong>of</strong> i given the past claims frequencies N it = k it , t =<br />

1 2T i , is obtained from (2.19) and (3.3). This gives<br />

(<br />

exp<br />

(− i<br />

∫ +<br />

0<br />

exp<br />

(<br />

−<br />

a + ∑ T i<br />

t=1 it<br />

(<br />

a + ∑ T i<br />

t=1 it<br />

( ))<br />

T<br />

∑ i<br />

= exp<br />

(− i a + it<br />

t=1<br />

))<br />

a+∑T i<br />

t=1 k it−1<br />

i<br />

))<br />

a+∑T i<br />

t=1 k it−1<br />

d<br />

a+∑T i<br />

t=1 k it−1<br />

i<br />

(<br />

a + ∑ T i<br />

<br />

t=1 it<br />

) a+<br />

∑ Ti<br />

t=1 k it<br />

(<br />

a + ∑ ) <br />

T i<br />

t=1 k it<br />

Coming back to (1.34), we recognize a Gamma probability density function. Specifically,<br />

we thus have that<br />

The correction coefficient is given by<br />

i N i1 N i2 N iTi ∼ am ( a + N i• a+ i•<br />

)<br />

(3.4)<br />

E i N i1 N i2 N iTi = a + N i•<br />

a + i•<br />

which clearly increases in the past claims N i• . The variance <strong>of</strong> i given past claim history<br />

is given by<br />

V i N i1 N i2 N iTi =<br />

a + N i•<br />

a + i• 2 <br />

The expected number <strong>of</strong> claims in year T i + 1 given past claims history is given by<br />

a + N<br />

EN iTi +1N i1 N i2 N iTi = iTi +1E i N i1 N i2 N iTi = i•<br />

iTi +1 <br />

a + i•

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!