12.07.2015 Views

El Laplaciano en Variedades Riemannianas - Centro de Matemática

El Laplaciano en Variedades Riemannianas - Centro de Matemática

El Laplaciano en Variedades Riemannianas - Centro de Matemática

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Observación 1.3De la expresión <strong>en</strong> coord<strong>en</strong>adas locales y la observación 1.2 t<strong>en</strong>emos que∀ u ∈ C ∞ (M)∇ g u = G −1 ∇u.Definición 1.3 (Diverg<strong>en</strong>cia <strong>de</strong> un campo <strong>de</strong> vectores)Dada ω forma <strong>de</strong> volum<strong>en</strong>, <strong>de</strong>finimos la diverg<strong>en</strong>cia <strong>de</strong> un campo X respectoa ω <strong>de</strong> la sigui<strong>en</strong>te manera:Sea i X ω la (n − 1)-forma <strong>de</strong>finida pori X ω(X 1 , ..., X n−1 ) = ω(X(x), X 1 , ..., X n−1 )∀ X 1 , ..., X n−1 ∈ T x M, ∀ x ∈ M.Luego d(i X ω) es una n-forma, por lo que existe un único número real div ω X<strong>de</strong> manera qued(i X ω) = div ω X · ωCálculo explícito <strong>de</strong> la diverg<strong>en</strong>cia <strong>en</strong> coord<strong>en</strong>adas locales.Consi<strong>de</strong>remos una forma <strong>de</strong> volum<strong>en</strong> ω = θdx 1 ∧ ... ∧ dx n con θ = √ <strong>de</strong>t(g ij ) yX un campo. Entoncesi X ω(X 1 , ..., ˆX i , ..., X n ) = ω(X, X 1 , ..., ˆX i , ..., X n )= (−1) i−1 ω(X 1 , ..., X, ..., X n )= (−1) i−1 X i ω(X 1 , ..., X n )= (−1) i−1 X i θDon<strong>de</strong> X i d<strong>en</strong>ota la i-ésima compon<strong>en</strong>te <strong>de</strong>l campo X y ˆX 1compon<strong>en</strong>te X i está omitida. Luegoindica que lad(i x ω) =n∑(−1) i−1 ∂(θXi )dx i ∧ dx 1 ∧ ... ∧ dˆx i ∧ ... ∧ dx n∂ xi=1i=n∑ ∂(θX i )dx 1 ∧ ... ∧ dx n∂ xi=1 i= 1 n∑ ∂(θX i )ωθ ∂ x ii=111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!