12.07.2015 Views

El Laplaciano en Variedades Riemannianas - Centro de Matemática

El Laplaciano en Variedades Riemannianas - Centro de Matemática

El Laplaciano en Variedades Riemannianas - Centro de Matemática

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.2 Transformada <strong>de</strong> FourierLuego∫∫|f(x)| 2 dx = |f(x)| 2 dx = ∑ |〈( 1R n C ε2 ε)n/2 e i〈k,x〉 , f(x)〉| 2k∈K ε= ∑ ∣ ∣∣∣∣ ∫∑( 1 2ˆf(j)k∈KC ε2 ε)n/2 e i〈k,x〉(2π) n/2 ei〈j,x〉 dx∣ε j∈K ε= ∑ ∣ ∣∣∣∣ ∫( 1 2ˆf(k)k∈KC ε2 ε)n/2(2π) n/2 (πε)n dx∣ε= ∑ ( 2 ε )2n ( 1 2| ˆf(k)|ε)n2 (2π) n (πε)2nk∈K ε= ∑ ∫| ˆf(k)| 2 (πε) n −−→ | ˆf(x)| 2 dxε→0k∈KR n ε(2)∫R n ˆφψ dx =∫==Análogam<strong>en</strong>te, se prueba que∫∫[∫]φ(x)e −i〈x,ξ〉 dξ ψ(x)dx(2π) n/2 R[∫n ]ψ(ξ)e −i〈ξ,x〉 dx φ(ξ)dξ (2.6)(2π) n/2 R nR n 1R n 1R n φ ˆψ dξ∫R n ˇφψ dx =∫R n φ ˇψ dxUtilizando la fórmula 2.6, si tomamos φ y ˆψ <strong>en</strong>tonces∫R n ˆφ ˆψ dx =∫R n φ ˆˆψ dξ =∫R n φψdξ(3) Observemos primero que Fφ = F −1 φ. Luego∫ ∫∫φ 2 dx = FφF −1 φdx = φFF −1 φdxR n R n R n∫ ∫∫φ 2 dx = F −1 φFφdx = φF −1 FφdxR n R n R nPor lo que φ = FF −1 φ = F −1 Fφ <strong>en</strong> casi todo punto, y como es continua, <strong>en</strong>todo punto.23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!