20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

470 H. Schultz / Journal of Functional Analysis 236 (2006) 457–489<br />

Proof of Theorem 3.2. eT (∅) = 0, because PT (∅) = 0. If B1,B2 ∈ B(C) with B1 ∩ B2 =∅, then<br />

KT (B1) ∩ KT (B2) ={0}, i.e. range(eT (B1)) ∩ range(eT (B2)) ={0}. According to Lemma 3.6,<br />

[eT (B1), eT (B2)]=0 so that eT (B1)eT (B2) ∈ I( ˜M). Moreover,<br />

range eT (B1)eT (B2) ⊆ range eT (B1) ∩ range eT (B2) ={0},<br />

and we conclu<strong>de</strong> that eT (B1)eT (B2) = eT (B2)eT (B1) = 0.<br />

Now, <strong>le</strong>t (Bn) ∞ n=1 be a sequence of mutually disjoint Borel sets. Then for each N ∈ N we get<br />

from Proposition 3.4 and Lemma 2.7 that<br />

<br />

N<br />

<br />

N<br />

<br />

range eT Bn = KT Bn = KT (B1) +···+KT (BN )<br />

n=1<br />

n=1<br />

= range eT (B1) +···+eT (BN ) <br />

and<br />

ker<br />

<br />

eT<br />

N<br />

Bn<br />

n=1<br />

<br />

N<br />

= KT<br />

n=1<br />

Bn<br />

c <br />

N<br />

= KT<br />

n=1<br />

= ker eT (B1) +···+eT (BN ) .<br />

B c n<br />

<br />

N<br />

=<br />

c<br />

KT Bn =<br />

n=1<br />

n=1<br />

N<br />

ker eT (Bn) <br />

Since an e<strong>le</strong>ment e in I( ˜M) is uniquely <strong>de</strong>termined by its kernel and its range, it follows that eT<br />

is additive, i.e.<br />

<br />

N<br />

<br />

= eT (B1) +···+eT (BN ) (N ∈ N). (3.12)<br />

n=1<br />

eT<br />

n=1<br />

Bn<br />

Additivity of eT implies that<br />

<br />

∞<br />

<br />

∞<br />

<br />

eT Bn − eT (Bn) = lim<br />

N→∞<br />

n=1<br />

eT<br />

= lim<br />

N→∞ eT<br />

(the limits refer to the mea<strong>sur</strong>e topology), where<br />

<br />

τ supp<br />

<br />

∞<br />

<br />

= τ<br />

<br />

∞<br />

eT<br />

as N →∞.<br />

Bn<br />

n=N+1<br />

PT<br />

∞<br />

Bn<br />

n=1<br />

∞<br />

Bn<br />

n=N+1<br />

n=N+1<br />

<br />

<br />

N<br />

−<br />

Bn<br />

<br />

= μT<br />

eT (Bn)<br />

n=1<br />

∞<br />

n=N+1<br />

Bn<br />

<br />

<br />

→ 0,<br />

Combining this with (3.13) and Lemma 3.5, we find that eT is σ -additive as well. ✷<br />

(3.13)<br />

Note that in the case where T is a normal operator, B ↦→ PT (B) is just the spectral mea<strong>sur</strong>e<br />

of T , and eT (B) = PT (B).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!