20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

500 J. Van Schaftingen / Journal of Functional Analysis 236 (2006) 490–516<br />

For every finite col<strong>le</strong>ction (xi)1ik in R n , the current ❏x0,...,xk❑ ∈ Dk(R n ) is <strong>de</strong>fined by<br />

<br />

❏x0,...,xk❑,ϕ <br />

=<br />

Sk<br />

<br />

ϕ<br />

k<br />

x0 + λixi<br />

i=1<br />

<br />

<br />

,x1 − x0 ∧···∧xk − x0 dλ.<br />

Definition 2.13. A current T ∈ Dk(R n ) is a real polyhedral chain if there is (x i j )1im,1jk in<br />

R n and (μi)1im in R such that<br />

T =<br />

m<br />

i=1<br />

i<br />

μi x0 ,...,x i ②<br />

k .<br />

The set of k-dimensional real polyhedral chains is <strong>de</strong>noted by Pk(R n ). Every real polyhedral<br />

chain has a compact support and a finite mass. Hence, 〈T,u〉 is well <strong>de</strong>fined when u : R n → Λ k R n<br />

is continuous. Moreover, if u : R n → R is continuous then 〈T,u〉∈(Λ k R n ) ′ ∼ = Λ k R n is naturally<br />

<strong>de</strong>fined.<br />

Definition 2.14. If u : R n → R is continuous, <strong>le</strong>t<br />

u ˜Vk(R n )<br />

= sup<br />

P ∈Pn−k(R n )<br />

∂P=0<br />

M(P )1<br />

〈P,u〉.<br />

The <strong>semi</strong>norm u ˜Vk(R n ) mea<strong>sur</strong>es the oscil<strong>la</strong>tion of the function u through its integral on<br />

k-dimensional real polyhedral chains without boundary.<br />

Theorem 2.15. For every n 1 and 1 k n − 1, there exists c>0 such that for every u ∈<br />

C(R n ),<br />

Proof. Given P in Pn−k(R n ),<strong>le</strong>t<br />

u ˜Vk(R n ) uDk(R n ) cu ˜Vk(R n ) .<br />

ϕε(x) = P,ρε(·−x) ,<br />

where ρε = ρ(·/ε)/ε n with ρ ∈ D(R n ), ρ 0 and <br />

R n ρdx= 1 and where ∗ <strong>de</strong>notes the Hodge<br />

<strong>du</strong>ality between Λ k R n and Λ n−k R n . One checks that dϕε = 0, ϕε L 1 (R n ) M(P ) and<br />

<br />

R n<br />

Since ρε ∗ u → u uniformly as ε → 0,<br />

uϕε dx =∗〈P,ρε ∗ u〉.<br />

uVk(R n ) uDk(R n ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!