20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A. Olofsson / Journal of Functional Analysis 236 (2006) 517–545 535<br />

The function Wn,T thus has the power series expansion<br />

Wn,T (z) =<br />

<br />

−T ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

+ <br />

k1<br />

1<br />

μn;k<br />

<br />

Dn,T T k−1 <br />

D<br />

k<br />

Qn,T z ,<br />

∗<br />

n,T<br />

z ∈ D. (3.7)<br />

We can now parametrize the wan<strong>de</strong>ring subspace En,T for In,T using the function Wn,T as<br />

follows.<br />

Theorem 3.3. Let T ∈ L(H) be an n-hypercontraction in the c<strong>la</strong>ss C0·. Then a function f in<br />

An(Dn,T ) belongs to the wan<strong>de</strong>ring subspace En,T for In,T if and only if it has the form<br />

f(z)= Wn,T (z)x, z ∈ D, (3.8)<br />

for some e<strong>le</strong>ment x ∈ D∗ n,T . Furthermore, we have the norm equality<br />

when f is of the form (3.8).<br />

f 2 An =x2n =x2 n−1<br />

+ Dk,T x 2 , x ∈ D ∗ n,T ,<br />

Proof. Let f ∈ En,T be given by (3.6). By formu<strong>la</strong>s (0.5) and (1.2) we have that<br />

f(z)=−T ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

k=1<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

x + <br />

k1<br />

1<br />

μn;k<br />

By the power series expansion (3.7) of the function Wn,T we conclu<strong>de</strong> that<br />

f(z)= Wn,T (z)x, z ∈ D.<br />

The conclusion of the theorem is now evi<strong>de</strong>nt by Theorem 3.2. ✷<br />

Dn,T T k−1 Qn,T x z k , z∈ D.<br />

We remark that in the case n = 1 of a contraction operator T ∈ L(H) the L(DT ∗, DT )-valued<br />

analytic function<br />

WT (z) = W1,T (z) = −T ∗ + zDT (I − zT ) −1 DT ∗<br />

<br />

DT , z∈D, ∗<br />

is the characteristic operator function studied by Sz.-Nagy and Foias (see [26, Chapter VI]).<br />

4. Multiplier properties of the function Wn,T<br />

In this section we discuss some multiplier properties of the function Wn,T .Wefirstshow<br />

that the function Wn,T acts as a contractive multiplier from the Hardy space A1(D∗ n,T ) into the<br />

Bergman space An(Dn,T ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!