20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A. Porretta, L. Véron / Journal of Functional Analysis 236 (2006) 581–591 589<br />

Observe that u h ,asu, also satisfies (2.21), so that in particu<strong>la</strong>r<br />

u h (x) − u(x) → 0 as|x|→R. (2.24)<br />

Therefore vh (x)−u(x) → 0as|x|→R too, whi<strong>le</strong> by construction vh u on ∂Br0 . We conclu<strong>de</strong><br />

from (2.23) (e.g. using the test function (vh − u + ε)−, which is compactly supported, and then<br />

<strong>le</strong>tting ε go to zero) that<br />

v h = u h +|h|LP (r) u.<br />

We recall that the Lie <strong>de</strong>rivative LAj u of u(r, ·) following the vector field tangent to SN−1 η ↦→<br />

Aj η is <strong>de</strong>fined by<br />

so we get, by <strong>le</strong>tting h → 0,<br />

LAj u(r, σ ) = <strong>du</strong>(r,etAj σ)<br />

dt<br />

<br />

<br />

<br />

t=0<br />

<br />

LAj u(r, ˜σ) LP (r) < C(R − r). (2.25)<br />

Step 2. One-si<strong>de</strong> estimate on the tangential second <strong>de</strong>rivatives.<br />

Next we <strong>de</strong>fine the function w h by<br />

w h = uh + u−h − 2u<br />

h2 .<br />

As before, <strong>le</strong>t r0 0 such that<br />

w h ˜L on ∂Br0 .<br />

Moreover, from (2.25) we get that wh = 0on∂BR. We conclu<strong>de</strong> that<br />

h<br />

w <br />

+ (x) ˜LP |x| ,<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!