20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S. Albeverio, A. Kosyak / Journal of Functional Analysis 236 (2006) 634–681 651<br />

Using this remark, notation (12) and Fourier transforms we conclu<strong>de</strong> that<br />

Γ(g1,g2,...,gm) = <strong>de</strong>t Ĉ, i.e. Γ(g1n,g2n,...,gmn) = <strong>de</strong>t Ĉ (n) , (14)<br />

since (gq,gp) = (Ĉ)pq, 1 p,q m. In<strong>de</strong>ed for p = q we have<br />

(gqn,gpn) = (gpn,gqn) =<br />

(gpn,gpn) =<br />

<br />

p−1<br />

<br />

<br />

<br />

<br />

r=1<br />

p−1<br />

<br />

r=1<br />

xrpyrn + ypn<br />

<br />

<br />

<br />

<br />

<br />

q−1<br />

xrpyrn + ypn, xsqysn + yqn<br />

2<br />

p−1 <br />

=<br />

r=1<br />

s=1<br />

(we reinserted here the upper in<strong>de</strong>x n in c (n)<br />

pq for c<strong>la</strong>rity).<br />

<br />

xrp 2 yrn 2 +ypn 2 =<br />

= (ypn,yqn) = c (n)<br />

pq ,<br />

p<br />

r=1<br />

c (n)<br />

rr = Ĉ (n)<br />

pp<br />

In the following we shall need a variant of Lemma 12 using Remark 13 rep<strong>la</strong>cing the<br />

|Mξ rp<br />

n (s)| by its maximum Ξ rp<br />

n . Let us set (see (10) for <strong>de</strong>finition of ξ rp<br />

n (s))<br />

<br />

n = max<br />

rp<br />

Mξn (s) 2 . (15)<br />

Ξ rp<br />

s∈R r<br />

Now we see that using s and α as in parts 4 and 5 of Remark 13 we have<br />

Σ r pq (s,α,m)<br />

= <br />

n<br />

(13)<br />

∼ <br />

n<br />

(15)<br />

= <br />

n<br />

max s (n) ∈R r |Mξ rp<br />

n (s (n) )| 2<br />

c (n)<br />

pp − maxs (n) ∈Rr |Mξ rp<br />

n (s (n) )| 2 +(Aqn − xpqDpn + m k=1,k=p α (n)<br />

c (n)<br />

max s (n) ∈R r |Mξ rp<br />

n (s (n) )| 2<br />

pp +(Aqn − xpqDpn + m k=1,k=p α (n)<br />

c (n)<br />

pp +<br />

Remark 9<br />

= <br />

n<br />

Ξ rp<br />

n<br />

Γ(g1n,g2n,...,g p qn,...,gmn)<br />

Γ(g1n,g2n,...,gq−1n,gq+1n,...,gmn)<br />

k<br />

Akn)1 2<br />

Ξ rp Γ(g1,g2,...,gq−1,gq+1,...,gm)<br />

cppΓ(g1,g2,...,gq−1,gq+1,...,gm) + Γ(g1,g2,...,g p q ,...,gm)<br />

k<br />

Akn)1 2<br />

= Σ r Ξ<br />

pq (m) :=<br />

n<br />

rpΓ(g1,g2,...,gq−1,gq+1,...,gm) (14) Ξ<br />

=<br />

Γ(g1,g2,...,gm)<br />

n<br />

rp<br />

n A q q(Ĉ (n) )<br />

<strong>de</strong>t Ĉ (n)<br />

.<br />

For the <strong>la</strong>tter equality we have used the fact that<br />

cppΓ(g1,g2,...,gq−1,gq+1,...,gm) + Γ g1,g2,...,g p <br />

q ,...,gm = Γ(g1,g2,...,gm),<br />

which follows from (26). In<strong>de</strong>ed it is sufficient to take in (26) C = Ĉ − cppEqq and λq = cpp.<br />

Then we have

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!