20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

580 K. Koufany, G. Zhang / Journal of Functional Analysis 236 (2006) 546–580<br />

In particu<strong>la</strong>r the in<strong>du</strong>ced Eq. (32) is of the form<br />

<br />

C1 + C2D(λ) R(ζvδ )(Bλf)= 0,<br />

where<br />

D(λ) = 1<br />

−(ρ − λ)(ξj )<br />

2<br />

2 − (ρ − λ)(ξj−1) 2 + (ρ − λ)(ξj )(ρ − λ)(ξj−1) <br />

+ C ′ 1 (ρ − λ)(ξ).<br />

Observe first that C1 > 0. If C2 = 0 it follows immediately that R(ζvδ )(Bλf)= 0, so we need<br />

only to consi<strong>de</strong>r the case C2 = 0. If C1 + C2D(λ) = 0 we get again R(ζvδ )(BλF) = 0. Finally,<br />

if C1 + C2D(λ) = 0 we may rep<strong>la</strong>ce f by t κγj for sufficiently <strong>la</strong>rge κ and still prove<br />

that R(ζvδ )(Bλf)= 0; see [12]. This comp<strong>le</strong>tes the proof.<br />

References<br />

[1] N. Berline, M. Vergne, Équations <strong>de</strong> Hua et noyau <strong>de</strong> Poisson, in: Noncommutative Harmonic Analysis and Lie<br />

Groups, Marseil<strong>le</strong>, 1980, in: Lecture Notes in Math., vol. 880, Springer, Berlin, 1981, pp. 1–51.<br />

[2] M. Englis, J. Peetre, Covariant Lap<strong>la</strong>cian operators on Käh<strong>le</strong>r manifolds, J. Reine Angew. Math. 478 (1996) 17–56.<br />

[3] J. Faraut, A. Korányi, Analysis on Symmetric Cones, Oxford Math. Monogr., C<strong>la</strong>rendon Press, Oxford, 1994.<br />

[4] S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical<br />

Functions, Pure Appl. Math., vol. 113, Aca<strong>de</strong>mic Press, Or<strong>la</strong>ndo, FL, 1984.<br />

[5] L.K. Hua, Harmonic Analysis of Functions of Several Comp<strong>le</strong>x Variab<strong>le</strong>s in the C<strong>la</strong>ssical Domains, Amer. Math.<br />

Soc., Provi<strong>de</strong>nce, RI, 1963, iv+164 pp.<br />

[6] K. Johnson, A. Korányi, The Hua operators on boun<strong>de</strong>d symmetric domains of tube type, Ann. of Math. (2) 111<br />

(1980) 589–608.<br />

[7] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, M. Tanaka, Eigenfunctions of invariant differential<br />

operators on a symmetric space, Ann. of Math. (2) 107 (1978) 1–39.<br />

[8] M. Lassal<strong>le</strong>, Les équations <strong>de</strong> Hua d’un domaine borné symétrique <strong>du</strong> type tube, Invent. Math. 77 (1984) 129–161.<br />

[9] O. Loos, Boun<strong>de</strong>d symmetric domains and Jordan pairs, University of California, Irvine, 1977.<br />

[10] T. Oshima, A <strong>de</strong>finition of boundary values of solutions of partial differential equations with regu<strong>la</strong>r singu<strong>la</strong>rities,<br />

Publ. Res. Inst. Math. Sci. 19 (1983) 1203–1230.<br />

[11] T. Oshima, Boundary value prob<strong>le</strong>ms for systems of linear partial differential equations with regu<strong>la</strong>r singu<strong>la</strong>rities,<br />

in: Adv. Stud. Pure Math., vol. 4, 1984, pp. 391–432.<br />

[12] N. Shimeno, Boundary value prob<strong>le</strong>ms for the Shilov boundary of a boun<strong>de</strong>d symmetric domain of tube type,<br />

J. Funct. Anal. 140 (1996) 124–141.<br />

[13] N. Shimeno, Boundary value prob<strong>le</strong>ms for various boundaries of Hermitian symmetric spaces, J. Funct. Anal. 170<br />

(2000) 265–285.<br />

[14] G. Shimura, Differential operators, holomorphic projection, and singu<strong>la</strong>r forms, Duke Math. J. 76 (1994) 141–173.<br />

[15] A. Unterberger, H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164<br />

(1994) 563–597.<br />

[16] H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math. 108 (1986) 1–25.<br />

[17] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics, in: CBMS Reg. Conf. Ser. Math.,<br />

vol. 67, Amer. Math. Soc., Provi<strong>de</strong>nce, RI, 1987.<br />

[18] Z. Yan, A c<strong>la</strong>ss of generalized hypergeometric functions in several variab<strong>le</strong>s, Canad. J. Math. 44 (1992) 1317–1338.<br />

[19] G. Zhang, Invariant differential operators on Hermitian symmetric spaces and their eigenvalues, Israel J. Math. 119<br />

(2000) 157–185.<br />

[20] G. Zhang, Shimura invariant differential operators and their eigenvalues, Math. Ann. 319 (2001) 235–265.<br />

[21] G. Zhang, Nearly holomorphic functions and re<strong>la</strong>tive discrete series of weighted L 2 -spaces on boun<strong>de</strong>d symmetric<br />

domains, J. Math. Kyoto Univ. 42 (2002) 207–221.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!