20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

704 D. Brydges, A. Ta<strong>la</strong>rczyk / Journal of Functional Analysis 236 (2006) 682–711<br />

We now proceed to the question of regu<strong>la</strong>rity of ALϕ.Letϕ ∈ H+(Λ) then, in particu<strong>la</strong>r, ϕ is<br />

a continuous function on [a,b] which vanishes at a and b. Assume first that b − a>4L. By<br />

(4.14) we obtain that for y ∈ (a + 2L,b − 2L)<br />

ALϕ(y) =<br />

y<br />

y−2L<br />

From this we obtain for y ∈ (a + 2L,b − 2L)<br />

and<br />

2L − y + x<br />

ϕ(x)<br />

(2L) 2<br />

y+2L <br />

dx +<br />

d<br />

dy ALϕ(y) = 1<br />

(2L) 2<br />

<br />

−<br />

y<br />

y−2L<br />

y<br />

ϕ(x)dx +<br />

ϕ(x)<br />

<br />

y+2L<br />

y<br />

2L + y − x<br />

(2L) 2<br />

ϕ(x)dx<br />

<br />

dx. (4.15)<br />

(4.16)<br />

d2 dy2 ALϕ(y) = 1<br />

(2L) 2<br />

<br />

ϕ(y − 2L) + ϕ(y + 2L) − 2ϕ(y) . (4.17)<br />

If y ∈ (a, a + 2L) then, again by (4.14) we have<br />

and<br />

ALϕ(y) =<br />

y<br />

a<br />

+<br />

2L − y + x<br />

ϕ(x)<br />

(2L) 2<br />

a+2L <br />

dx +<br />

<br />

y+2L<br />

a+2L<br />

ϕ(x)<br />

2L + y − x<br />

(2L) 2<br />

d<br />

dy ALϕ(y) = 1<br />

(2L) 2<br />

y<br />

− ϕ(x)dx +<br />

a<br />

<br />

a+2L<br />

y<br />

y<br />

y − a<br />

ϕ(x)<br />

2L(x − a) dx<br />

dx, (4.18)<br />

ϕ(x) 2L<br />

dx +<br />

x − a<br />

<br />

y+2L<br />

a+2L<br />

ϕ(x)dx<br />

<br />

(4.19)<br />

d2 dy2 ALϕ(y) = 1<br />

(2L) 2<br />

<br />

ϕ(y + 2L) − ϕ(y) − ϕ(y) 2L<br />

<br />

. (4.20)<br />

y − a<br />

Now it is easy to see, taking into account that ϕ(a) = 0, that if we <strong>le</strong>t y → a + 2L all the<br />

corresponding limits in (4.15)–(4.20) coinci<strong>de</strong>. Hence ALϕ is also twice continuously differentiab<strong>le</strong><br />

at y = a + 2L. The same reasoning shows that ALϕ is twice continuously differentiab<strong>le</strong><br />

in (b − 2L,b) and at b − 2L, which proves the statement of the proposition in case b − a>4L.<br />

The cases 2L b − a 4L and b − a 2L can be investigated in a simi<strong>la</strong>r way.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!