20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

620 E. Kissin / Journal of Functional Analysis 236 (2006) 609–629<br />

By (5.3), for x ∈ D(S) and y ∈ D(S ∗ ),<br />

(Sx, Uy) = U ∗ Sx,y = SU ∗ x,y + tU ∗ x,y = x, US ∗ + tU y .<br />

Hence Uy ∈ D(S ∗ ) and (S ∗ U −US ∗ )y = tUy. Simi<strong>la</strong>rly, U ∗ y ∈ D(S ∗ ) and (S ∗ U ∗ −U ∗ S ∗ )y =<br />

−tU ∗ y. Therefore UD(S ∗ ) = D(S ∗ ), U ∗ D(S ∗ ) = D(S ∗ ) and<br />

S ∗ U − US ∗ D(S ∗ ) = tU|D(S ∗ ) and S ∗ U ∗ − U ∗ S ∗ D(S ∗ ) =−tU ∗ |D(S ∗ ). (5.4)<br />

Hence, as above, we have that λ → λ + t is an isomorphism of Sp(S ∗ ).<br />

For λ ∈ Λ(S), we have from (5.3) that UHλ ⊆ Hλ+t and U ∗ Hλ ⊆ Hλ−t . Therefore<br />

UHλ ⊆ Hλ+t = UU ∗ Hλ+t ⊆ UHλ.<br />

Hence UHλ = Hλ+t and λ → λ + t is an isomorphism of Λ(S). Using (5.4), we obtain that the<br />

same is true for Λ(S ∗ ). Part (i) is proved.<br />

For any unitary U, the operator USU ∗ is selfadjoint,<br />

D USU ∗ = UD(S) and EUSU∗(λ) ∗<br />

= UES(λ)U<br />

for all λ ∈ R. (5.5)<br />

Let U ∈ ZS(t). By (5.3), UD(S) = U ∗ D(S) = D(S) and USU ∗ |D(S) = S − t1| D(S). Hence it<br />

follows from (5.2) that<br />

EUSU ∗(λ) = ES−t1(λ) = ES(λ + t) for all λ ∈ R.<br />

Taking into account (5.5), we have UES(λ)U ∗ = ES(λ + t). Thus U is an (S,t)-shift.<br />

Conversely, <strong>le</strong>t U be an (S,t)-shift. Then UD(S) = D(S) and UES(λ)U ∗ = ES(λ + t) for<br />

all λ ∈ R. Hence it follows from (5.2) and (5.5) that<br />

so USU ∗ |D(S) = S − t1|D(S). Thus<br />

Therefore U ∈ ZS(t). ✷<br />

EUSU ∗(λ) = UES(λ)U ∗ = ES−t1(λ),<br />

δS(U)|D(S) = i(SU − US)|D(S) = itU|D(S).<br />

Theorem 5.1 has an especially simp<strong>le</strong> form when S is diagonal, that is, H = <br />

λ∈Λ(S) Hλ.<br />

Corol<strong>la</strong>ry 5.2. Let S be a diagonal selfadjoint operator. Then t ∈ ΓS if and only if λ → λ + t is<br />

an isomorphism of Λ(S) and dim Hλ = dim Hλ+t for all λ ∈ Λ(S).<br />

From Corol<strong>la</strong>ry 5.2 it follows that, for any subgroup Γ of R, there is a diagonal S with<br />

ΓS = Γ .<br />

If for each t ∈ ΓS, there is Ut ∈ ZS(t) such that U ={Ut: t ∈ ΓS} is a group, then U is cal<strong>le</strong>d<br />

a resolving subgroup of ZS. It is commutative and consists of unitary operators Ut , t ∈ ΓS,<br />

satisfying<br />

UtD(S) = D(S) and (SUt − UtS)|D(S) = tUt|D(S).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!