20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

688 D. Brydges, A. Ta<strong>la</strong>rczyk / Journal of Functional Analysis 236 (2006) 682–711<br />

Now we give some results exp<strong>la</strong>ining in more <strong>de</strong>tail the construction of the <strong>de</strong>composition of<br />

Theorem 2.6.<br />

For U any convex boun<strong>de</strong>d open subset of Λ, <strong>le</strong>tpU be the orthogonal projection in H+(Λ)<br />

onto the subspace H+(U). In particu<strong>la</strong>r pU = 0forU =∅.Weset<br />

Ux = (x + U)∩ Λ.<br />

Lemma 2.7. For each ϕ ∈ H+(Λ) there exists a unique vector Tϕin H+(Λ) such that<br />

(T ϕ, ψ)+ = 1<br />

<br />

|U|<br />

The linear operator T : H+(Λ) ↦→ H+(Λ) is a contraction.<br />

dx(pUx ϕ,ψ)+ for all ψ ∈ H+(Λ). (2.6)<br />

The main ingredient of the <strong>de</strong>composition is the following theorem allowing to “cut out” from<br />

G a bilinear form which is positive-<strong>de</strong>finite and of finite range.<br />

Theorem 2.8. Let U be a convex, boun<strong>de</strong>d open subset of Λ.Forf ∈ H−(Λ), <strong>de</strong>fine<br />

Then the bilinear form G1 such that<br />

is:<br />

(1) positive-<strong>de</strong>finite;<br />

(2) finite range with range 2diamU.<br />

A ′ U f = f − T ′ f. (2.7)<br />

G(f, f ) = G1(f, f ) + G A ′ U f,A ′ <br />

U f<br />

We construct the finite range <strong>de</strong>composition by an iterated application of Theorem 2.8. Let<br />

U0 be a convex open boun<strong>de</strong>d set containing the origin and for j = 1, 2,...<strong>le</strong>t Uj be a sequence<br />

of domains obtained by scaling U,<br />

For each domain construct T ′<br />

j<br />

Uj = x: L −j x ∈ U .<br />

(2.8)<br />

, A ′<br />

j , ˜Gj by rep<strong>la</strong>cing U by Uj in the construction of G1 given<br />

above. Set f1 = f and for j 2, set fj = A ′<br />

j−1 fj−1. Define bilinear forms Gj for j 1by<br />

Gj (f, f ) = ˜Gj (fj ,fj ).<br />

Proposition 2.9.<br />

(1) G(f, f ) = n j=1 Gj (f, f ) +A ′<br />

n ...A ′<br />

1f 2 −,Λ .<br />

(2) Given L>1, <strong>le</strong>t the diameter of U0 be chosen <strong>le</strong>ss than 1<br />

2 (1 − L−1 ). Then for all j 1 the<br />

range of Gj is <strong>le</strong>ss than Lj .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!