20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

K. Koufany, G. Zhang / Journal of Functional Analysis 236 (2006) 546–580 549<br />

at the point 0 ∈ Ω. Then K is a maximal compact subgroup of G and as a Hermitian symmetric<br />

space, Ω = G/K. Letg be the Lie algebra of G, and<br />

g = k + p<br />

be its Cartan <strong>de</strong>composition. The Lie algebra k of K has one-dimensional center z. Then there<br />

exists an e<strong>le</strong>ment Z0 ∈ z such that ad Z0 <strong>de</strong>fines the comp<strong>le</strong>x structure of p.Let<br />

gC = p + ⊕ kC ⊕ p −<br />

be the corresponding eigenspace <strong>de</strong>composition of gC, the comp<strong>le</strong>xification of g. We will use the<br />

Jordan theoretic characterization of Ω; the corresponding Lie theoretic characterization will be<br />

then more transparent and which we will also use.<br />

There exists a quadratic map Q : V → End( ¯V,V) (here ¯V is the comp<strong>le</strong>x conjugate of V ),<br />

such that<br />

p ={ξv: v ∈ V },<br />

where ξv(z) = v − Q(z) ¯v. We will hereafter i<strong>de</strong>ntify p + with V by the natural mapping<br />

and p − with ¯V by the mapping<br />

1<br />

2 (ξv − iξiv) = v ↦→ v,<br />

− 1<br />

2 (ξv + iξiv) = Q(z) ¯v ↦→ ¯v ∈ ¯V ;<br />

we will write ¯v = Q(z) ¯v when viewed as e<strong>le</strong>ment in the Lie algebra and when no ambiguity<br />

would arise.<br />

Let {z ¯vw} be the po<strong>la</strong>rization of Q(z) ¯v, i.e.<br />

{z ¯vw}=Q(z + w)¯v − Q(z) ¯v − Q(w) ¯v.<br />

This <strong>de</strong>fines a trip<strong>le</strong> pro<strong>du</strong>ct V × ¯V × V → V , with respect to which V is a JB ⋆ -trip<strong>le</strong>, see [17].<br />

We <strong>de</strong>fine D(z, ¯v) ∈ End(V ) by<br />

D(z, ¯v)w ={z ¯vw}.<br />

The space V carries a K-invariant inner pro<strong>du</strong>ct<br />

〈z, w〉= 1<br />

tr D(z, ¯w), (4)<br />

p<br />

where “tr” is the trace functional on End(V ), and p = p(Ω) is the genus of Ω (see Eq. (6)).<br />

Besi<strong>de</strong> the Eucli<strong>de</strong>an norm, V carries also the spectral norm,<br />

<br />

<br />

z= <br />

1 <br />

D(z, ¯z) <br />

2 <br />

1/2<br />

,<br />

(3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!