20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

M.J. Crabb / Journal of Functional Analysis 236 (2006) 630–633 633<br />

Remark. The set M ∪{0} forms an inverse monoid un<strong>de</strong>r the multiplication given by<br />

<br />

(A ∪ gB)gh if A ∪ gB ∈ L,<br />

AgBh =<br />

0 otherwise.<br />

This is cal<strong>le</strong>d the McAlister monoid on X and is the Rees quotient of the free inverse monoid on<br />

X by the i<strong>de</strong>al generated by all e<strong>le</strong>ments xy −1 and x −1 y with x,y ∈ X and x = y [4]. Barnes [1]<br />

constructs for any inverse <strong>semi</strong>group a representation on Hilbert space; this is used here to<br />

generate C ∗ M. Weaver’s examp<strong>le</strong> in [7] is also generated by an inverse <strong>semi</strong>group of partial<br />

isometries. Re<strong>la</strong>ted results on l 1 -algebras are <strong>de</strong>scribed in [3,4].<br />

Acknow<strong>le</strong>dgment<br />

I thank Professor W.D. Munn for intro<strong>du</strong>cing me to the notion of the McAlister monoid and<br />

for help with setting out this paper.<br />

References<br />

[1] B.A. Barnes, Representations of the l 1 -algebra of an inverse <strong>semi</strong>group, Trans. Amer. Math. Soc. 218 (1976) 361–<br />

396.<br />

[2] F. Bonsall, J. Duncan, Comp<strong>le</strong>te Normed Algebras, Springer-Ver<strong>la</strong>g, Berlin, 1973.<br />

[3] M.J. Crabb, The l 1 -algebra of a free inverse monoid, G<strong>la</strong>sgow University, preprint.<br />

[4] M.J. Crabb, W.D. Munn, The contracted l 1 -algebra of a McAlister monoid, G<strong>la</strong>sgow University, preprint.<br />

[5]J.Dixmier,Sur<strong>le</strong>sC ∗ -algèbres, Bull. Soc. Math. France 88 (1960) 95–112.<br />

[6] J. Dixmier, C ∗ -algèbres et <strong>le</strong>urs représentations, Gauthier–Vil<strong>la</strong>rs, Paris, 1969.<br />

[7] N. Weaver, A prime C ∗ -algebra that is not primitive, J. Funct. Anal. 203 (2003) 356–361.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!