20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A. Olofsson / Journal of Functional Analysis 236 (2006) 517–545 529<br />

since Vn is an isometry. We have thus shown that a function f in An(Dn,T ) satisfies the equation<br />

(I − VnV ∗ n )S∗ nf = 0 if and only if it has the form (2.3) for some e<strong>le</strong>ments a0 ∈ Dn,T and x ∈ H.<br />

We shall now compute V ∗ n f when f ∈ An(Dn,T ) is of the form (2.3) for some e<strong>le</strong>ments a0 ∈<br />

Dn,T and x ∈ H. Notice that the intertwining re<strong>la</strong>tion VnT = S∗ nVn gives that V ∗ n Sn = T ∗V ∗ n .By<br />

Lemma 2.2 we now have that<br />

V ∗ n f = Dn,T a0 + V ∗ n Sn<br />

∗ −1Vnx<br />

Sn Sn = Dn,T a0 + T ∗ V ∗ ∗ −1Vnx.<br />

n Sn Sn<br />

Recall that the operator V ∗ n (S∗ n Sn) −1 Vn was computed in Lemma 2.3. We conclu<strong>de</strong> that<br />

V ∗ n f = Dn,T a0 + T ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

x,<br />

where f ∈ An(Dn,T ), a0 ∈ Dn,T and x ∈ H are re<strong>la</strong>ted as in (2.3). This gives the conclusion of<br />

the theorem. ✷<br />

We shall next compute the norm of a function of the form f = a0 + S ′ n Vnx.<br />

Theorem 2.2. Let T ∈ L(H) be an n-hypercontraction in the c<strong>la</strong>ss C0·. Let f in An(Dn,T ) be of<br />

the form<br />

for some e<strong>le</strong>ments a0 ∈ Dn,T and x ∈ H. Then<br />

Proof. By Lemma 2.3 we have that<br />

f = a0 + S ′ n Vnx<br />

f 2 An =a0 2 n−1<br />

+<br />

k=0<br />

(−1) k<br />

f 2 An =a0 2 + ′<br />

S nVnx 2 An =a0 2 n−1<br />

+<br />

This comp<strong>le</strong>tes the proof of the theorem. ✷<br />

3. Parametrization of the wan<strong>de</strong>ring subspace En,T<br />

<br />

n T<br />

k + 1<br />

k x 2 .<br />

k=0<br />

(−1) k<br />

<br />

n T <br />

k<br />

x2 .<br />

k + 1<br />

In this section we shall solve Eq. (2.2) and give a more refined <strong>de</strong>scription of the wan<strong>de</strong>ring<br />

subspace En,T for In,T using the operator-valued analytic function Wn,T .<br />

We shall need some constructions involving the use of <strong>de</strong>fect operators of contractions between<br />

Hilbert spaces. Let A ∈ L(H, K) be a contraction operator mapping a Hilbert space H<br />

into a Hilbert space K. Associated to this operator A we have the <strong>de</strong>fect operator DA <strong>de</strong>fined by<br />

DA = (I − A ∗ A) 1/2<br />

in L(H),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!