20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

K. Koufany, G. Zhang / Journal of Functional Analysis 236 (2006) 546–580 577<br />

In particu<strong>la</strong>r, if s = 1, WPs,u(z) = 0; the simi<strong>la</strong>r result, VPs,u(z) = 0 for the Hua operator V<br />

was proved by Berline and Vergne [1, Proposition 3.3].<br />

7.3. The sufficiency of the Hua equation (25)<br />

The i<strong>de</strong>a of the proof is simi<strong>la</strong>r to that in Section 6, and many technical computations on the<br />

various <strong>de</strong>composition involving the third-or<strong>de</strong>r Hua operators W and U are paral<strong>le</strong>l to those<br />

in [1] for the Berline–Vergne’s Hua operator V, so we will not present all <strong>de</strong>tails.<br />

Suppose hereafter that f ∈ M(λs) satisfies (25). We first observe that the operator U can also<br />

be written as<br />

U = <br />

vγ v ∗ αv∗ β ⊗ vα, [vβ,v ∗ γ ]<br />

α,β,γ<br />

since [[v ∗ γ ,vα],vβ]=[vα, [vβ,v ∗ γ ]] by the Jacobi i<strong>de</strong>ntity and by [vα,vβ]=0. Writing<br />

with<br />

U δ ⊗ vδ = <br />

α+β−γ =δ<br />

we have, mo<strong>du</strong>lo U(gC)kC,<br />

U = U δ ⊗ vδ, W = W δ ⊗ vδ,<br />

vγ v ∗ α v∗ β ⊗ vδ, W δ ⊗ vδ = <br />

U δ ⊗ vδ − W δ <br />

<br />

⊗ vδ =<br />

α+β−γ =δ<br />

α+β−γ =δ<br />

|Cα,β,γ | 2<br />

<br />

v ∗ δ ⊗ vδ,<br />

v ∗ α v∗ β vγ ⊗ vδ, (26)<br />

where Cα,β,γ are given by [vα, [vβ,v ∗ γ ]] = Cα,β,γ vδ.<br />

Writing Y = <br />

δ Yδ ⊗ vδ as above with Y δ ∈ U(g) we have then mo<strong>du</strong>lo U(gC)kC<br />

with<br />

Thus<br />

C1 := <br />

α+β−γ =δ<br />

Y δ = C1v ∗ δ<br />

δ + C2W<br />

|Cα,β,γ | 2 , C2 := 1 − −2σ 2 + 2pσ + c<br />

σ(2σ − p − b) .<br />

Y δ f = 0. (27)<br />

for any non-compact root δ ≡ (γj + γj−1)/2 mo<strong>du</strong>lo t −<br />

C , by our assumption on f . We will henceforth<br />

fix one such δ, and study the in<strong>du</strong>ced equation of (27).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!