20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

534 A. Olofsson / Journal of Functional Analysis 236 (2006) 517–545<br />

where the positive square root is computed in L(Hn). We <strong>de</strong>note by D∗ n,T the clo<strong>sur</strong>e in H of<br />

the range of the operator Qn,T , that is, D∗ n,T = Qn,T (H), and we equip this space D∗ n,T with the<br />

Hilbert space structure given by the norm ·n <strong>de</strong>fined by (3.3).<br />

We can now restate Theorem 3.1 using the space D∗ n,T as follows.<br />

Theorem 3.2. Let T ∈ L(H) be an n-hypercontraction in the c<strong>la</strong>ss C0·. Then a function f in<br />

An(Dn,T ) belongs to the wan<strong>de</strong>ring subspace En,T for In,T if and only if it has the form<br />

f =−T ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

Furthermore, we have the norm equality that f 2 An =x2 n .<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

x + S ′ nVnQn,T x, x ∈ D ∗ n,T . (3.6)<br />

Proof. Recall the action of the adjoint operator T ∗ n ∈ L(Hn, H) given by Lemma 3.3. The map<br />

In : H → Hn naturally i<strong>de</strong>ntifies the space D∗ n,T with the <strong>de</strong>fect space DT ∗. The result is evi<strong>de</strong>nt<br />

n<br />

by Theorem 3.1. ✷<br />

We record also the following <strong>le</strong>mma.<br />

Lemma 3.4. Let T ∈ L(H) be an n-hypercontraction. Then<br />

in L(H).<br />

T ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

Qn,T = Dn,T T ∗<br />

<br />

n−1<br />

k=0<br />

(−1) k<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

Proof. By (3.2) we have the formu<strong>la</strong> T ∗ n DT ∗ n = DTnT ∗ n in L(Hn, H). Recall that DTn = Dn,T by<br />

Lemma 3.3, and the action of T ∗ n given by the same <strong>le</strong>mma. This makes evi<strong>de</strong>nt the conclusion<br />

of the <strong>le</strong>mma. ✷<br />

Let T ∈ L(H) be an n-hypercontraction. We recall from the intro<strong>du</strong>ction the <strong>de</strong>finition of the<br />

operator-valued analytic function Wn,T :<br />

Wn,T (z) =<br />

z ∈ D.<br />

<br />

−T ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

n<br />

+ zDn,T (I − zT )<br />

k=1<br />

−k<br />

<br />

D<br />

Qn,T ,<br />

∗<br />

n,T<br />

By Lemma 3.4 the values Wn,T (z) attained by this function Wn,T are operators in L(D ∗ n,T , Dn,T ).<br />

Notice that<br />

<br />

1<br />

μn;k+1<br />

k0<br />

z k = 1<br />

<br />

<br />

1<br />

− 1<br />

z (1 − z) n<br />

=<br />

n<br />

k=1<br />

1<br />

, z∈D. (1 − z) k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!