20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

J. Van Schaftingen / Journal of Functional Analysis 236 (2006) 490–516 499<br />

One has fεL1 (Rn ) 1 and div fε = 0, therefore<br />

<br />

<br />

<br />

ufε dx<br />

uDn−1(Rn ).<br />

R n<br />

The proof continues as for the first part of Proposition 2.10.<br />

The converse inequality comes from on a result of Smirnov [18], which states that for<br />

every R>0 and for every f ∈ D(B(0,R); Rn ) there exists (γ ℓ m )1m,ℓ in C1 (S1 ; B(0,R)) and<br />

(λℓ m )1m,ℓ in R such that for every m 1,<br />

<br />

λ ℓ <br />

<br />

m<br />

˙γ ℓ <br />

<br />

m L1 (S1 f ) L1 (Rn ) ,<br />

and for every u ∈ C(B(0,R))<br />

as m →∞. ✷<br />

ℓ1<br />

∞<br />

ℓ=1<br />

λ ℓ m<br />

2.6. Geometric characterization of Vk(R n )<br />

<br />

S 1<br />

u γ ℓ m (t) ˙γ ℓ <br />

m dt →<br />

R n<br />

uf d x<br />

The characterization of the <strong>semi</strong>norm ·Dk(R n ) of Proposition 2.10, relies essentially on the<br />

fact that the <strong>semi</strong>norm could be evaluated by consi<strong>de</strong>ring differential of sca<strong>la</strong>r functions, whi<strong>le</strong><br />

in Proposition 2.11 it relied on the <strong>de</strong>composition result of Smirnov. Those facts do not hold<br />

anymore for 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!