20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Van Schaftingen / Journal of Functional Analysis 236 (2006) 490–516 515<br />

Remark A.9. The <strong>de</strong>nsity is with respect to the usual topology on the space of test functions [16].<br />

Proof of Theorem A.8. Let ϕ ∈ D#(R n ; Λ n R n ). Therefore ϕ = fω1 ∧ ··· ∧ ωn, with f ∈<br />

D(R n ) and <br />

R n fdx= 0. Let (ρε)ε>0 be a sequence of mollifiers. Define gε ∈ D(R n ; R n ) by<br />

Next, note<br />

2<br />

gε(z) =<br />

f L1 (Rn )<br />

2<br />

div gε(z) =<br />

f L1 (Rn )<br />

2<br />

=<br />

f L1 (Rn )<br />

<br />

R n ×R n<br />

<br />

R n ×R n<br />

<br />

R n ×R n<br />

<br />

(x − y)<br />

1<br />

0<br />

0<br />

1<br />

<br />

ρε z − tx − (1 − t)y f+(x)f−(y) dt dx dy.<br />

<br />

(x − y) ·∇ρε z − tx − (1 − t)y f+(x)f−(y) dt dx dy<br />

ρε(z − x) − ρε(z − y) f+(x)f−(y) dx dy<br />

= (ρε ∗ f )(z). (A.2)<br />

Therefore div gε → f in D(R n ) as ε → 0. Letting<br />

one conclu<strong>de</strong>s<br />

as ε → 0. ✷<br />

ψε =<br />

n<br />

g i ε (−1)i+1ω1 ∧···∧ωi ∧···∧ωn,<br />

i=1<br />

dψε = div gε ω1 ∧···∧ωn → fω1 ∧···∧ωn = ϕ<br />

Remark A.10. The construction (A.2) is inspired from the construction of a non-optimal mass<br />

disp<strong>la</strong>cement p<strong>la</strong>n in the Monge–Kantorovich mass disp<strong>la</strong>cement prob<strong>le</strong>m [11].<br />

References<br />

[1] R.A. Adams, Sobo<strong>le</strong>v Spaces, Pure Appl. Math., vol. 65, Aca<strong>de</strong>mic Press, New York, 1975.<br />

[2] F. Bethuel, G. Or<strong>la</strong>ndi, D. Smets, Approximations with vorticity bounds for the Ginzburg–Landau functional, Commun.<br />

Contemp. Math. 6 (5) (2004) 803–832.<br />

[3] J. Bourgain, H. Brezis, New estimates for the Lap<strong>la</strong>cian, the div–curl, and re<strong>la</strong>ted Hodge systems, C. R. Math. Acad.<br />

Sci. Paris 338 (7) (2004) 539–543.<br />

[4] J. Bourgain, H. Brezis, P. Mironescu, H 1/2 maps with values into the circ<strong>le</strong>: Minimal connections, lifting, and the<br />

Ginzburg–Landau equation, Publ. Math. Inst. Hautes Étu<strong>de</strong>s Sci. 99 (2004) 1–115.<br />

[5] H. Brezis, Analyse fonctionnel<strong>le</strong>, Col<strong>le</strong>ct. Math. Appl. Maîtrise, Masson, Paris, 1983.<br />

[6] H. Brezis, L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Se<strong>le</strong>cta Math.<br />

(N.S.) 1 (2) (1995) 197–263.<br />

[7] H. Brezis, J. Van Schaftingen, L 1 estimates on domains, in preparation.<br />

[8] D.-C. Chang, G. Dafni, E.M. Stein, Hardy spaces, BMO, and boundary value prob<strong>le</strong>ms for the Lap<strong>la</strong>cian on a<br />

smooth domain in R n , Trans. Amer. Math. Soc. 351 (4) (1999) 1605–1661.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!