20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

436 D. Serre / Journal of Functional Analysis 236 (2006) 409–446<br />

from which we find<br />

v ∗ H(η)v=|η||v| 2 + 2Y · ηℑ(v3 ¯v2) + 2Z · ηℑ(v1 ¯v3) + 2V · ηℑ(v2 ¯v1). (46)<br />

The Lopatinskiĭ <strong>de</strong>terminant writes<br />

with<br />

<br />

<br />

−ω iV · η −iZ · η <br />

<br />

<br />

(τ, η) = <br />

−iV · η −ω iY · η <br />

<br />

<br />

<br />

iZ · η −iY · η −ω<br />

= ωq(η)− ω 2 ,<br />

q(η) := (V · η) 2 + (Y · η) 2 + (Z · η) 2 . (47)<br />

Let λ±(q) <strong>de</strong>note the eigenvalues of the quadratic form q. The roots of (·,η) are given by<br />

τ =±i|η| (for ω = 0), and by<br />

τ 2 = q(η)−|η| 2 . (48)<br />

On the one hand, this equation has a positive real root for some η if and only if 1 1.<br />

When λ+(q) < 1, the well-posedness of the hyperbolic IBVP is a consequence of Theorem<br />

3.5. Alternately, we may remark that W is convexifiab<strong>le</strong> in the sense of Section 2.1, and<br />

then apply the Hil<strong>le</strong>–Yosida theorem. Thanks to Theorem 2.1, and since d = 3,weonlyhaveto<br />

verify that W(G,F3·) is positive whenever G ∈ M2×3(R) has rank one. To check this property,<br />

we rewrite<br />

where B is the boundary operator and<br />

2W(∇xu) =|Bu| 2 + W1(∇yu),<br />

W1(∇yu) =|∇yu| 2 − (V ·∇yu2 − Z ·∇yu3) 2 − (Y ·∇yu3 − V ·∇yu1) 2<br />

− (Z ·∇yu1 − Y ·∇yu2) 2 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!