20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

560 K. Koufany, G. Zhang / Journal of Functional Analysis 236 (2006) 546–580<br />

Corol<strong>la</strong>ry 5.4. Let Ω be a tube type domain. For any u ∈ S, the function z ↦→ Ps,u(z) satisfies<br />

the Hua equation<br />

where I is the i<strong>de</strong>ntity operator.<br />

2 n<br />

HPs,u(z) = 2 s(s − 1)Ps,u(z)I, (13)<br />

r<br />

This corol<strong>la</strong>ry has been proved also by Faraut and Korányi [3, Theorem XIII.4.4]. Notice that<br />

the first factor 2 in (13) is because in this case our Hua operator is twice the Hua operator of<br />

Faraut and Korányi. In fact, we are using the <strong>de</strong>finition [u, ¯v]=D(u, ¯v) so that for tube domain<br />

it is twice the “square” operator ✷ of Faraut and Korányi.<br />

In [12, Theorem 4.1] Shimeno gives the following characterization of the image of Poisson<br />

transform for tube type domains.<br />

Theorem 5.5. Let Ω be a tube type domain. Suppose s ∈ C satisfies the following condition:<br />

<br />

−4 1 + j a<br />

2<br />

<br />

n<br />

+ (s − 1) /∈{1, 2, 3,...} for j = 0 and 1.<br />

r<br />

A smooth function f on Ω is the Poisson transform Ps of a hyperfunction on S if and only if f<br />

satisfies the following Hua equation<br />

2 n<br />

Hf = 2 s(s − 1)f Z0.<br />

r<br />

This is a slightly different formu<strong>la</strong>tion of Shimeno’s result. In fact, if s ′ <strong>de</strong>notes the Shimeno’s<br />

parameter, then our parameter s is<br />

s = r<br />

<br />

s<br />

2n<br />

′ + n<br />

<br />

.<br />

r<br />

6. The main result for type Ir,r+b domains<br />

In this section we restrict ourself to the case Ω = Ir,r+b. Recall that in Section 2.2 we have<br />

fixed a <strong>de</strong>composition kC = k (1)<br />

C ⊕ k(2)<br />

C .We<strong>le</strong>tH(1) be the first component of the Hua operator H.<br />

Symbolically H (1) is given by<br />

and can be i<strong>de</strong>ntified with the operator<br />

H (1) = D b(z, ¯z)¯∂,∂ (1) ,<br />

(Ir − zz ∗ )¯∂z · (Ir+b − z ∗ z) · t ∂z<br />

intro<strong>du</strong>ced by Hua [5], since in this case b(z, ¯z)v = (I − zz ∗ )v(I − z ∗ z).<br />

We state now the main theorem of this section.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!