20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

416 D. Serre / Journal of Functional Analysis 236 (2006) 409–446<br />

Lemma 2.1. The stored energy W is convex on H 1 (Ω) n if, and only if, the following onedimensional<br />

quadratic functional Iη is non-negative over H 1 (0, +∞) n , for every vector η ∈<br />

R d−1 :<br />

Notice that when v = Fyu, then<br />

<br />

Iη[v]:=<br />

+∞<br />

0<br />

W(iη⊗ v,v ′ )dxd.<br />

Fy(∇yu) = iη ⊗ v, Fy(∂<strong>du</strong>) = v ′ .<br />

We are thus <strong>le</strong>d to the study of the convexity over H 1 (0, +∞) n of functionals of the form<br />

I[v]:= 1<br />

2<br />

<br />

+∞<br />

0<br />

w(v,v ′ )dxd, (8)<br />

where w : C n × C n → R is a sesquilinear form. In addition, the <strong>de</strong>nsities w satisfy<br />

∃ɛ >0 s.t. w(v,iξv) ɛ |η| 2 + ξ 2 |v| 2 , (9)<br />

because of uniform rank-one convexity. Notice that if W1 and W2 differ only by a TNF, then<br />

w1 = w2.<br />

Let us <strong>de</strong>compose a general <strong>de</strong>nsity w as<br />

w(v,v ′ ) =〈Λv ′ ,v ′ 〉+2ℜ〈Av ′ ,v〉+〈Σv,v〉, (10)<br />

where 〈·,·〉 is the Hermitian pro<strong>du</strong>ct in C n and Λ and Σ are Hermitian positive <strong>de</strong>finite, because<br />

of (9). We point out that in our variational context, Λ, Σ = Ση and iA = iAη have real entries.<br />

Here, we give a sufficient condition for the convexity of W, which will be shown necessary<br />

in Proposition 3.2.<br />

Theorem 2.2. Let the functional I be <strong>de</strong>fined by (8), (10). Assume that there exists a non-negative<br />

Hermitian n × n matrix K, with the property that the (2n) × (2n) Hermitian matrix<br />

<br />

Σ A+ K<br />

S :=<br />

A∗ <br />

(11)<br />

+ K Λ<br />

be non-negative. Then I is convex over H 1 (0, +∞) n .<br />

If S is positive <strong>de</strong>finite, then I is coercive.<br />

Proof. Let wS be the sesquilinear form associated to S. Then<br />

I[v]= 1<br />

2<br />

+∞<br />

<br />

wS(v, v ′ ) − 2ℜ〈Kv ′ ,v〉 dxd.<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!