20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A. Olofsson / Journal of Functional Analysis 236 (2006) 517–545 521<br />

In this way an n-hypercontraction T ∈ L(H) in the c<strong>la</strong>ss C0· is naturally mo<strong>de</strong><strong>le</strong>d as part of the<br />

adjoint shift operator S ∗ n on the Bergman space An(Dn,T ). Full <strong>de</strong>tails of this construction can<br />

be found in [22, Sections 6 and 7].<br />

We mention that construction of operator mo<strong>de</strong>ls of this type is a topic of current interest in<br />

multi-variab<strong>le</strong> operator theory with recent contributions by Ambrozie et al. [4] and Arazy and<br />

Engliš [6]. Operator mo<strong>de</strong>ls of this type also form an integral part in recent work on constrained<br />

von Neumann inequalities by Ba<strong>de</strong>a and Cassier [8].<br />

In this paper we shall consi<strong>de</strong>r in some more <strong>de</strong>tail the subspace<br />

In,T = An(Dn,T ) ⊖ Vn(H)<br />

of An(Dn,T ). Since the range Vn(H) is invariant for S ∗ n , its orthogonal comp<strong>le</strong>ment In,T is<br />

invariant for the shift operator Sn. In other words, the space In,T is a shift invariant subspace of<br />

An(Dn,T ). The wan<strong>de</strong>ring subspace En,T for In,T is the subspace<br />

En,T = In,T ⊖ Sn(In,T )<br />

of In,T . To present our parametrization of the wan<strong>de</strong>ring subspace En,T for In,T we need some<br />

more notations.<br />

Let T ∈ L(H) be an n-hypercontraction. We <strong>de</strong>note by Hn the space H equipped with the<br />

equiva<strong>le</strong>nt norm<br />

x 2 n =<br />

n−1<br />

k=0<br />

(−1) k<br />

(see Lemma 3.1). It turns out that the operator<br />

TT ∗<br />

<br />

n T n−1<br />

k<br />

x2 2<br />

=x + Dk,T x<br />

k + 1<br />

2 , x ∈ H (0.6)<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

k=1<br />

in L(H)<br />

is self-adjoint in L(Hn) and has its spectrum contained in the closed unit interval [0, 1] (see<br />

Lemma 3.3). We <strong>de</strong>note by Qn,T the operator<br />

Qn,T =<br />

<br />

I − TT ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

1/2 in L(H),<br />

where the positive square root is computed in L(Hn).ByD∗ n,T we <strong>de</strong>note the clo<strong>sur</strong>e in H of the<br />

range of this operator Qn,T , and we equip this space D∗ n,T with the norm ·n <strong>de</strong>fined by (0.6).<br />

It turns out that we have the equality<br />

T ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

in L(H) (see Lemma 3.4).<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

Qn,T = Dn,T T ∗<br />

<br />

n−1<br />

k=0<br />

(−1) k<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

(0.7)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!