20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A. Olofsson / Journal of Functional Analysis 236 (2006) 517–545 533<br />

where y = DT ∗ n Inx − Tna0 ∈ DT ∗. Applying the operator θTn to this <strong>la</strong>st equality we find that<br />

n<br />

Inx<br />

a0<br />

<br />

= θTn<br />

<br />

0 DT<br />

=<br />

y<br />

∗ n y<br />

−T ∗ n y<br />

<br />

.<br />

This makes evi<strong>de</strong>nt that every solution x ∈ H and a0 ∈ DTn of Eq. (3.4) is of the form<br />

<br />

x = I −1<br />

n DT ∗ n y,<br />

a0 =−T ∗ n y<br />

for some e<strong>le</strong>ment y ∈ DT ∗ n . Also, if x ∈ H and a0 ∈ DTn are given by (3.5) for some e<strong>le</strong>ment<br />

y ∈ DT ∗, then, by property (3.2) of <strong>de</strong>fect operators, Eq. (3.4) holds. We have thus shown that<br />

n<br />

the solutions of (3.4) are parametrized by (3.5). By (3.5) we now have that<br />

f = a0 + S ′ nVnx =−T ∗ n y + S′ −1<br />

nVnIn DT ∗ n y,<br />

where y ∈ DT ∗ n .<br />

Let us now prove the norm equality that f 2 An =y2 n .Letx ∈ H and a0 ∈ Dn,T be given<br />

by (3.5). By Theorem 2.2 we have that<br />

f 2 An =a0 2 n−1<br />

+<br />

k=0<br />

(−1) k<br />

<br />

n T<br />

k + 1<br />

k x 2 =a0 2 +x 2 n = T ∗ n y 2 +DT ∗ n y2 n =y2 n ,<br />

where the <strong>la</strong>st equality follows by (3.1). This comp<strong>le</strong>tes the proof of the theorem. ✷<br />

Let T ∈ L(H) be an n-hypercontraction. Notice that by Lemma 3.2 the operator TnT ∗ n in<br />

L(Hn) acts as<br />

TnT ∗ n x = TT∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

x, x ∈ Hn.<br />

Since the operator Tn ∈ L(H, Hn) is a contraction by Lemma 3.3, the operator<br />

TT ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

in L(H)<br />

is self-adjoint in L(Hn) and has its spectrum contained in the closed unit interval [0, 1]. We<br />

<strong>de</strong>note by Qn,T the operator<br />

Qn,T =<br />

<br />

I − TT ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

1/2 in L(H),<br />

(3.5)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!